Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
BMC Genomics ; 24(1): 587, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794325

RESUMO

BACKGROUND: Developing high yielding varieties is a major challenge for breeders tackling the challenges of climate change in agriculture. The panicle (inflorescence) architecture of rice is one of the key components of yield potential and displays high inter- and intra-specific variability. The genus Oryza features two different crop species: Asian rice (Oryza sativa L.) and the African rice (O. glaberrima Steud.). One of the main morphological differences between the two independently domesticated species is the structure (or complexity) of the panicle, with O. sativa displaying a highly branched panicle, which in turn produces a larger number of grains than that of O. glaberrima. The gene regulatory network that governs intra- and interspecific panicle diversity is still under-studied. RESULTS: To identify genetic factors linked to panicle architecture diversity in the two species, we used a set of 60 Chromosome Segment Substitution Lines (CSSLs) issued from third generation backcross (BC3DH) and carrying genomic segments from O. glaberrima cv. MG12 in the genetic background of O. sativa Tropical Japonica cv. Caiapó. Phenotypic data were collected for rachis and primary branch length, primary, secondary and tertiary branch number and spikelet number. A total of 15 QTLs were localized on chromosomes 1, 2, 3, 7, 11 and 12, QTLs associated with enhanced secondary and tertiary branch numbers were detected in two CSSLs. Furthermore, BC4F3:5 lines carrying different combinations of substituted segments were produced to decipher the effects of the identified QTL regions on variations in panicle architecture. A detailed analysis of phenotypes versus genotypes was carried out between the two parental genomes within these regions in order to understand how O. glaberrima introgression events may lead to alterations in panicle traits. CONCLUSION: Our analysis led to the detection of genomic variations between O. sativa cv. Caiapó and O. glaberrima cv. MG12 in regions associated with enhanced panicle traits in specific CSSLs. These regions contain a number of key genes that regulate panicle development in O. sativa and their interspecific genomic variations may explain the phenotypic effects observed.


Assuntos
Oryza , Introgressão Genética , Locos de Características Quantitativas , Fenótipo , Genômica
2.
Mol Ecol ; 31(6): 1800-1819, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35060228

RESUMO

Understanding vulnerabilities of plant populations to climate change could help preserve their biodiversity and reveal new elite parents for future breeding programmes. To this end, landscape genomics is a useful approach for assessing putative adaptations to future climatic conditions, especially in long-lived species such as trees. We conducted a population genomics study of 207 Coffea canephora trees from seven forests along different climate gradients in Uganda. For this, we sequenced 323 candidate genes involved in key metabolic and defence pathways in coffee. Seventy-one single nucleotide polymorphisms (SNPs) were found to be significantly associated with bioclimatic variables, and were thereby considered as putatively adaptive loci. These SNPs were linked to key candidate genes, including transcription factors, like DREB-like and MYB family genes controlling plant responses to abiotic stresses, as well as other genes of organoleptic interest, such as the DXMT gene involved in caffeine biosynthesis and a putative pest repellent. These climate-associated genetic markers were used to compute genetic offsets, predicting population responses to future climatic conditions based on local climate change forecasts. Using these measures of maladaptation to future conditions, substantial levels of genetic differentiation between present and future diversity were estimated for all populations and scenarios considered. The populations from the forests Zoka and Budongo, in the northernmost zone of Uganda, appeared to have the lowest genetic offsets under all predicted climate change patterns, while populations from Kalangala and Mabira, in the Lake Victoria region, exhibited the highest genetic offsets. The potential of these findings in terms of ex situ conservation strategies are discussed.


Assuntos
Coffea , Mudança Climática , Coffea/genética , Marcadores Genéticos , Melhoramento Vegetal , Uganda
3.
Mol Biol Rep ; 47(6): 4835-4840, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32451929

RESUMO

Myristica fragrans (Myristicaceae) is a tropical evergreen tree that yields the two famous spices: nutmeg and mace. Despite its socio-economic importance, the spatial distribution of its genetic diversity is barely documented. In this aim, 48 nuclear microsatellite markers were isolated of which 14 were polymorphic in M. fragrans. Number of alleles per locus ranged from 2 to 6. The level of observed heterozygosity ranged from 0.038 to 0.929 across loci. Transferability of these microsatellites in other Myristica species (M. fatua, M. argentea, and M. crassipes) and Myristicaceae species (Horsfieldia palauensis) was tested and successful. These new microsatellites will be useful for future investigation on genetic diversity and population structure of M. fragrans and phylogenetically-related species.


Assuntos
Repetições de Microssatélites/genética , Myristica/genética , Alelos , Frequência do Gene/genética , Genótipo , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Indonésia , Myristica/química , Myristicaceae/genética , Extratos Vegetais , Sementes/química
4.
Mol Ecol ; 25(21): 5500-5512, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27664976

RESUMO

Uncovering genomic regions involved in adaption is a major goal in evolutionary biology. High-throughput sequencing now makes it possible to tackle this challenge in nonmodel species. Yet, despite the increasing number of methods targeted to specifically detect genomic footprints of selection, the complex demography of natural populations often causes high rates of false positive in gene discoveries. The aim of this study was to identify climate adaptations in wild pearl millet populations, Cenchrus americanus ssp. monodii. We focused on two climate gradients, one in Mali and one in Niger. We used a two-step strategy to limit false-positive outliers. First, we considered gradients as biological replicates and performed RNA sequencing of four populations at the extremities. We combined four methods-three based on differentiation among populations and one based on diversity patterns within populations-to identify outlier SNPs from a set of 87 218 high-quality SNPs. Among 11 155 contigs of pearl millet reference transcriptome, 540 exhibited selection signals as evidenced by at least one of the four methods. In a second step, we genotyped 762 samples in 11 additional populations distributed along the gradients using SNPs from the detected contigs and random SNPs as control. We further assessed selection on this large data set using a differentiation-based method and a method based on correlations with environmental variables based. Four contigs displayed consistent signatures between the four extreme and 11 additional populations, two of which were linked to abiotic and biotic stress responses.


Assuntos
Adaptação Fisiológica/genética , Genética Populacional , Pennisetum/genética , Estresse Fisiológico , Clima , Genoma de Planta , Genótipo , Mali , Níger , Polimorfismo de Nucleotídeo Único , Transcriptoma
5.
Theor Appl Genet ; 127(1): 19-32, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24114050

RESUMO

KEY MESSAGE: Linkage analysis confirmed the association in the region of PHYC in pearl millet. The comparison of genes found in this region suggests that PHYC is the best candidate. Major efforts are currently underway to dissect the phenotype-genotype relationship in plants and animals using existing populations. This method exploits historical recombinations accumulated in these populations. However, linkage disequilibrium sometimes extends over a relatively long distance, particularly in genomic regions containing polymorphisms that have been targets for selection. In this case, many genes in the region could be statistically associated with the trait shaped by the selected polymorphism. Statistical analyses could help in identifying the best candidate genes into such a region where an association is found. In a previous study, we proposed that a fragment of the PHYTOCHROME C gene (PHYC) is associated with flowering time and morphological variations in pearl millet. In the present study, we first performed linkage analyses using three pearl millet F2 families to confirm the presence of a QTL in the vicinity of PHYC. We then analyzed a wider genomic region of ~100 kb around PHYC to pinpoint the gene that best explains the association with the trait in this region. A panel of 90 pearl millet inbred lines was used to assess the association. We used a Markov chain Monte Carlo approach to compare 75 markers distributed along this 100-kb region. We found the best candidate markers on the PHYC gene. Signatures of selection in this region were assessed in an independent data set and pointed to the same gene. These results foster confidence in the likely role of PHYC in phenotypic variation and encourage the development of functional studies.


Assuntos
Desequilíbrio de Ligação , Pennisetum/genética , Fitocromo/genética , Sequência de Bases , Mapeamento Cromossômico , Estudos de Associação Genética , Cadeias de Markov , Dados de Sequência Molecular , Método de Monte Carlo , Locos de Características Quantitativas , Análise de Sequência de DNA
6.
BMC Genet ; 15: 3, 2014 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-24393630

RESUMO

BACKGROUND: Association mapping studies offer great promise to identify polymorphisms associated with phenotypes and for understanding the genetic basis of quantitative trait variation. To date, almost all association mapping studies based on structured plant populations examined the main effects of genetic factors on the trait but did not deal with interactions between genetic factors and environment. In this paper, we propose a methodological prospect of mixed linear models to analyze genotype by environment interaction effects using association mapping designs. First, we simulated datasets to assess the power of linear mixed models to detect interaction effects. This simulation was based on two association panels composed of 90 inbreds (pearl millet) and 277 inbreds (maize). RESULTS: Based on the simulation approach, we reported the impact of effect size, environmental variation, allele frequency, trait heritability, and sample size on the power to detect the main effects of genetic loci and diverse effect of interactions implying these loci. Interaction effects specified in the model included SNP by environment interaction, ancestry by environment interaction, SNP by ancestry interaction and three way interactions. The method was finally used on real datasets from field experiments conducted on the two considered panels. We showed two types of interactions effects contributing to genotype by environment interactions in maize: SNP by environment interaction and ancestry by environment interaction. This last interaction suggests differential response at the population level in function of the environment. CONCLUSIONS: Our results suggested the suitability of mixed models for the detection of diverse interaction effects. The need of samples larger than that commonly used in current plant association studies is strongly emphasized to ensure rigorous model selection and powerful interaction assessment. The use of ancestry interaction component brought valuable information complementary to other available approaches.


Assuntos
Interação Gene-Ambiente , Estudos de Associação Genética , Modelos Genéticos , Pleiotropia Genética , Genótipo , Modelos Lineares , Panicum/genética , Polimorfismo de Nucleotídeo Único , Zea mays/genética
7.
PLoS One ; 19(4): e0299493, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625928

RESUMO

Though facing significant challenges, coffee (Coffea arabica) grown in Haitian agroforestry systems are important contributors to rural livelihoods and provide several ecosystem services. However, little is known about their genetic diversity and the variety mixtures used. In light of this, there is a need to characterize Haitian coffee diversity to help inform revitalization of this sector. We sampled 28 diverse farms in historically important coffee growing regions of northern and southern Haiti. We performed KASP-genotyping of SNP markers and HiPlex multiplex amplicon sequencing for haplotype calling on our samples, as well as several Ethiopian and commercial accessions from international collections. This allowed us to assign Haitian samples to varietal groups. Our analyses revealed considerable genetic diversity in Haitian farms, higher in fact than many farmers realized. Notably, genetic structure analyses revealed the presence of clusters related to Typica, Bourbon, and Catimor groups, another group that was not represented in our reference accession panel, and several admixed individuals. Across the study areas, we found both mixed-variety farms and monovarietal farms with the historical and traditional Typica variety. This study is, to our knowledge, the first to genetically characterize Haitian C. arabica variety mixtures, and report the limited cultivation of C. canephora (Robusta coffee) in the study area. Our results show that some coffee farms are repositories of historical, widely-abandoned varieties while others are generators of new diversity through genetic mixing.


Assuntos
Coffea , Café , Humanos , Haiti , Ecossistema , Coffea/genética , Variação Genética
8.
Mol Biol Evol ; 29(4): 1199-212, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22114357

RESUMO

The plant domestication process is associated with considerable modifications of plant phenotype. The identification of the genetic basis of this adaptation is of great interest for evolutionary biology. One of the methods used to identify such genes is the detection of signatures of selection. However, domestication is generally associated with major demographic effects. It is therefore crucial to disentangle the effects of demography and selection on diversity. In this study, we investigated selection in a flowering time pathway during domestication of pearl millet. We first used a random set of 20 genes to model pearl millet domestication using approximate Bayesian computation. This analysis showed that a model with exponential growth and wild-cultivated gene flow was well supported by our data set. Under this model, the domestication date of pearl millet is estimated at around 4,800 years ago. We assessed selection in 15 pearl millet DNA sequences homologous to flowering time genes and showed that these genes underwent selection more frequently than expected. We highlighted significant signatures of selection in six pearl millet flowering time genes associated with domestication or improvement of pearl millet. Moreover, higher deviations from neutrality were found for circadian clock-associated genes. Our study provides new insights into the domestication process of pearl millet and shows that a category of genes of the flowering pathway were preferentially selected during pearl millet domestication.


Assuntos
Evolução Molecular , Flores/genética , Genes de Plantas , Pennisetum/genética , Seleção Genética , Agricultura , Teorema de Bayes , Modelos Genéticos
9.
BMC Plant Biol ; 13: 178, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24219837

RESUMO

BACKGROUND: Clonal propagation is a particular reproductive system found in both the plant and animal kingdoms, from human parasites to clonally propagated crops. Clonal diversity provides information about plant and animal evolutionary history, i.e. how clones spread, or the age of a particular clone. In plants, this could provide valuable information about agrobiodiversity dynamics and more broadly about the evolutionary history of a particular crop. We studied the evolutionary history of yam, Dioscorea rotundata. In Africa, Yam is cultivated by tuber clonal propagation. RESULTS: We used 12 microsatellite markers to identify intra-clonal diversity in yam varieties. We then used this diversity to assess the relative ages of clones. Using simulations, we assessed how Approximate Bayesian Computation could use clonal diversity to estimate the age of a clone depending on the size of the sample, the number of independent samples and the number of markers. We then applied this approach to our particular dataset and showed that the relative ages of varieties could be estimated, and that each variety could be ranked by age. CONCLUSIONS: We give a first estimation of clone age in an approximate Bayesian framework. However the precise estimation of clone age depends on the precision of the mutation rate. We provide useful information on agrobiodiversity dynamics and suggest recurrent creation of varietal diversity in a clonally propagated crop.


Assuntos
Biodiversidade , Dioscorea/crescimento & desenvolvimento , Dioscorea/genética , Variação Genética , Agricultura , Células Clonais , Simulação por Computador , Loci Gênicos , Genótipo , Humanos , Taxa de Mutação , Fatores de Tempo
10.
Mol Ecol ; 22(24): 6163-78, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24118476

RESUMO

Amborella trichopoda Baill. (Amborellaceae, Amborellales), the sole living member of the sister group to all other extant angiosperms, is endemic to New Caledonia. We addressed the intraspecific phylogeography of Amborella by investigating whether its present population genetic structure could be related to its current and past habitats. We found moderate range-wide genetic diversity based on nuclear microsatellite data and detected four well-differentiated, geographically distinct genetic groups using Bayesian clustering analyses. We modelled the ecological niche of Amborella based on the current climatic and environmental conditions. The predictive ability of the model was very good throughout the Central East mainland zone, but Amborella was predicted in the northern part of the island where this plant has not been reported. Furthermore, no significant barrier was detected based on habitat suitability that could explain the genetic differentiation across the area. Conversely, we found that the main genetic clusters could be related to the distribution of the suitable habitat at the last glacial maximum (LGM, c. 21,000 years BP), when Amborella experienced a dramatic 96.5% reduction in suitable area. At least two lineages survived in distinct putative refugia located in the Massif des Lèvres and in the vicinity of Mount Aoupinié. Our findings finally confirmed the importance of LGM rainforest refugia in shaping the current intra- and interspecific diversity in New Caledonian plants and revealed the possibility of an as yet unreported refugium. The combination of niche modelling and population genetics thereby offered novel insight into the biogeographical history of an emblematic taxon.


Assuntos
Ecossistema , Variação Genética , Magnoliopsida/genética , Modelos Genéticos , Teorema de Bayes , Análise por Conglomerados , Ecologia/métodos , Fluxo Gênico , Genética Populacional/métodos , Genótipo , Repetições de Microssatélites , Nova Caledônia , Filogeografia , Análise de Sequência de DNA
11.
Mitochondrial DNA B Resour ; 8(7): 751-755, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37485420

RESUMO

Myristica argentea Warb. 1891 and M. fatua Houtt. 1774 are two South-East Asian food tree species. They are harvested from the wild or cultivated for local uses as a condiment (nutmeg and mace), medicine, and source of wood. In this study, we reconstructed the complete chloroplast (cp) genomes of these two species from whole genome sequencing data using the Illumina NovaSeq platform. The genome sizes of M. argentea and M. fatua were respectively 155,871 base pairs (bp) and 155,898 bp, including 126 genes and an overall GC content of 39.20% in both species. Our study provides useful resources for future evolutionary research and diversity analysis of Myristica species.

12.
G3 (Bethesda) ; 13(5)2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36891809

RESUMO

Pearl millet (Pennisetum glaucum (L.)) R. Br. syn. Cenchrus americanus (L.) Morrone) is an important crop in South Asia and sub-Saharan Africa which contributes to ensuring food security. Its genome has an estimated size of 1.76 Gb and displays a high level of repetitiveness above 80%. A first assembly was previously obtained for the Tift 23D2B1-P1-P5 cultivar genotype using short-read sequencing technologies. This assembly is, however, incomplete and fragmented with around 200 Mb unplaced on chromosomes. We report here an improved quality assembly of the pearl millet Tift 23D2B1-P1-P5 cultivar genotype obtained with an approach combining Oxford Nanopore long reads and Bionano Genomics optical maps. This strategy allowed us to add around 200 Mb at the chromosome-level assembly. Moreover, we strongly improved continuity in the order of the contigs and scaffolds within the chromosomes, particularly in the centromeric regions. Notably, we added more than 100 Mb around the centromeric region on chromosome 7. This new assembly also displayed a higher gene completeness with a complete BUSCO score of 98.4% using the Poales database. This more complete and higher quality assembly of the Tift 23D2B1-P1-P5 genotype now available to the community will help in the development of research on the role of structural variants and more broadly in genomics studies and the breeding of pearl millet.


Assuntos
Nanoporos , Pennisetum , Pennisetum/genética , Melhoramento Vegetal , Genoma , Mapeamento Cromossômico
13.
PhytoKeys ; 233: 1-200, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37811332

RESUMO

Monodoreae (Annonaceae) is a tribe composed of 11 genera and 90 species restricted to the tropical African rain forests. All the genera are taxonomically well circumscribed except the species rich genera Uvariodendron and Uvariopsis which lack a recent taxonomic revision. Here, we used a robust phylogenomic approach, including all the 90 currently accepted species, with several specimens per species, and based on more than 300 Annonaceae-specific nuclear genes, to infer the phylogenetic tree of the Monodoreae and test the limits between the genera and species. We recover all the genera as monophyletic, except the genus Uvariopsis for which the species Uvariopsistripetala falls outside this clade. We thus reinstate the monotypic genus Dennettia for its single species Dennettiatripetala. We also erect a new tribe, Ophrypetaleae trib. nov., to accommodate the genera Ophrypetalum and Sanrafaelia, as we recover them excluded from the Monodoreae tribe with good support. Below the genus level, the genera Isolona, Monodora, Uvariastrum, Uvariodendron and Uvariopsis show weakly supported nodes and phylogenetic conflicts, suggesting that population level processes of evolution might occur in these clades. Our results also support, at the molecular level, the description of several new species of Uvariodendron and Uvariopsis, as well as several new synonymies. Finally, we present a taxonomic revision of the genera Dennettia, Uvariodendron and Uvariopsis, which contain one, 18 and 17 species respectively. We provide a key to the 11 genera of the Monodoraeae and describe four new species to science: Uvariodendronkimbozaense Dagallier & Couvreur, sp. nov., Uvariodendronmossambicense Robson ex Dagallier & Couvreur, sp. nov., Uvariodendronpilosicarpum Dagallier & Couvreur, sp. nov. and Uvariopsisoligocarpa Dagallier & Couvreur, sp. nov., and provide provisional descriptions of three putatively new species. We also present lectotypifications and nomenclatural changes implying synonymies and new combinations (Uvariodendroncitriodorum (Le Thomas) Dagallier & Couvreur, comb. et stat. nov., Uvariodendronfuscumvar.magnificum (Verdc.) Dagallier & Couvreur, comb. et stat. nov., Uvariopsiscongensisvar.angustifolia Dagallier & Couvreur, var. nov., Uvariopsisguineensisvar.globiflora (Keay) Dagallier & Couvreur, comb. et stat. nov., and Uvariopsissolheidiivar.letestui (Pellegr.) Dagallier & Couvreur, comb. et stat. nov.).


RésuméLa tribu des Monodoreae (Annonaceae) est composée de 11 genres et 90 espèces des forêts tropicales humides d'Afrique. Tout les genres sont taxonomiquement bien résolus, à part les genres Uvariodendron et Uvariopsis qui manquent d'une révision taxonomique récente. Ici, nous avons utilisé une approche phylogénomique robuste pour estimer l'arbre phylogénétique des Monodoreae, et tester les limites de genres et d'espèces. Pour cela, nous avons inclut les 90 espèces acceptées, et avons séquencé plus de 300 gènes. Tous les genres sont retrouvés monophylétiques, à part le genre Uvariopsis pour lequel l'espèce Uvariopsistripetala se retrouve exclue. Nous rétablissons donc le genre monotypique Dennettia et son unique espèce Dennettiatripetala. Nous érigeons une nouvelle tribu, les Ophrypetaleae trib. nov., pour accueillir les genres Ophrypetalum et Sanrafaelia, car nous les retrouvons exclus de la tribu des Monodoreae avec un bon support. Au niveau infra-générique, les genres Isolona, Monodora, Uvariastrum, Uvariodendron et Uvariopsis montrent de faibles supports de noeuds et des conflits phylogénétiques, ce qui suggère que des processus d'évolution se déroulent au niveau des populations. Nos résultats soutiennent également, sur un plan moléculaire, la description de plusieurs nouvelles espèces d'Uvariodendron et d'Uvariopsis, de même que plusieurs synonymies. Enfin, nous présentons une révision taxonomique des genres Dennettia, Uvariodendron et Uvariopsis, qui contiennent respectivement un, 18 et 17 espèces. Nous fournissons une clé des 11 genres de Monodoreae, et décrivons quatre nouvelles espèces pour la science: Uvariodendronkimbozaense Dagallier & Couvreur, sp. nov., Uvariodendronmossambicense Robson ex Dagallier & Couvreur, sp. nov., Uvariodendronpilosicarpum Dagallier & Couvreur, sp. nov. et Uvariopsisoligocarpa Dagallier & Couvreur, sp. nov., et fournissons une description provisoire de trois autres potentielles. Nous effectuons des lectotypifications et des changements nomenclaturaux tels que des synonymies et des nouvelles combinaisons (Uvariodendroncitriodorum (Le Thomas) Dagallier & Couvreur, comb. et stat. nov., Uvariodendronfuscumvar.magnificum (Verdc.) Dagallier & Couvreur, comb. et stat. nov., Uvariopsiscongensisvar.angustifolia Dagallier & Couvreur, var. nov., Uvariopsisguineensisvar.globiflora (Keay) Dagallier & Couvreur, comb. stat. nov., et Uvariopsissolheidiivar.letestui (Pellegr.) Dagallier & Couvreur, comb. stat. nov.).

14.
Am J Bot ; 99(10): e411-4, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23028001

RESUMO

PREMISE OF THE STUDY: Informative markers are required for assessing the diversity of Amborella trichopoda, the only species of its order, endemic to New Caledonia and considered to be the sister species to all flowering plants. Therefore, expressed sequence tag (EST)-based microsatellite markers were developed. • METHODS AND RESULTS: Fifty-five microsatellite loci were characterized in 14896 putative unigenes, which were generated by assembling A. trichopoda ESTs from the public sequence database. Seventeen markers revealed polymorphism in 80 adult shrubs from three populations. The number of alleles per locus ranged from two to 12, with a total of 132 alleles scored. The mean expected heterozygosity per population ranged from 0.336 to 0.567. • CONCLUSIONS: These markers offer an appropriate amount of variation to investigate genetic diversity structure, gene flow, and other conservation issues.


Assuntos
Magnoliopsida/genética , Repetições de Microssatélites/genética , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , Loci Gênicos/genética , Nova Caledônia , Polimorfismo Genético
15.
Front Plant Sci ; 13: 880631, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311100

RESUMO

Pearl millet is among the top three-cereal production in one of the most climate vulnerable regions, sub-Saharan Africa. Its Sahelian origin makes it adapted to grow in poor sandy soils under low soil water regimes. Pearl millet is thus considered today as one of the most interesting crops to face the global warming. Flowering time, a trait highly correlated with latitude, is one of the key traits that could be modulated to face future global changes. West African pearl millet landraces, can be grouped into early- (EF) and late-flowering (LF) varieties, each flowering group playing a specific role in the functioning and resilience of Sahelian smallholders. The aim of this study was thus to detect genes linked to flowering but also linked to relevant traits within each flowering group. We thus investigated genomic and phenotypic diversity in 109 pearl millet landrace accessions, i.e., 66 early-flowering and 43 late-flowering, grown in the groundnut basin, the first area of rainfed agriculture in Senegal dominated by dry cereals (millet, maize, and sorghum) and legumes (groundnuts, cowpeas). We were able to confirm the role of PhyC gene in pearl millet flowering and identify several other genes that appear to be as much as important, such as FSR12 and HAC1. HAC1 and two other genes appear to be part of QTLs previously identified and deserve further investigation. At the same time, we were able to highlight a several genes and variants that could contribute to the improvement of pearl millet yield, especially since their impact was demonstrated across flowering cycles.

16.
Mol Ecol ; 20(1): 80-91, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21050293

RESUMO

Identifying the molecular bases of adaptation is a key issue in evolutionary biology. Genome scan is an efficient approach for identifying important molecular variation involved in adaptation. Association mapping also offers an opportunity to gain insight into genotype-phenotype relationships. Using these two approaches coupled with environmental data should help to come up with a refined picture of the evolutionary process underlying adaptation. In this study, we first conducted a selection scan analysis on a transcription factor gene family. We focused on the MADS-box gene family, a gene family which plays a crucial role in vegetative and flower development. Twenty-one pearl millet populations were sampled along an environmental gradient in West Africa. We identified one gene, i.e. PgMADS11, using Bayesian analysis to detect selection signatures. Polymorphism at this gene was also associated with flowering time variation in an association mapping framework. Finally, we found that PgMADS11 allele frequencies were closely associated with annual rainfall. Overall, we determined an efficient way to detect functional polymorphisms associated with climate variation in non-model plants by combining genome scan and association mapping. These results should help monitor the impact of recent climatic changes on plant adaptation.


Assuntos
Adaptação Fisiológica/genética , Genoma de Planta/genética , Pennisetum/genética , Adaptação Fisiológica/fisiologia , Teorema de Bayes , Variação Genética/genética , Genótipo , Proteínas de Domínio MADS/genética , Pennisetum/fisiologia , Fenótipo , Proteínas de Plantas/genética , Polimorfismo Genético/genética
17.
PLoS One ; 15(9): e0239123, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32925982

RESUMO

Cultivated diversity is considered an insurance against major climatic variability. However, since the 1980s, several studies have shown that climate variability and agricultural changes may already have locally eroded crop genetic diversity. We studied pearl millet diversity in Senegal through a comparison of pearl millet landraces collected 40 years apart. We found that more than 20% of villages visited in 1976 had stopped growing pearl millet. Despite this, its overall genetic diversity has been maintained but differentiation between early- and late-flowering accessions has been reduced. We also found stronger crop-to-wild gene flow than wild-to-crop gene flow and that wild-to-crop gene flow was weaker in 2016 than in 1976. In conclusion, our results highlight genetic homogenization in Senegal. This homogenization within cultivated pearl millet and between wild and cultivated forms is a key factor in genetic erosion and it is often overlooked. Improved assessment and conservation strategies are needed to promote and conserve both wild and cultivated pearl millet diversity.


Assuntos
Produção Agrícola/tendências , Produtos Agrícolas/genética , Evolução Molecular , Variação Genética , Pennisetum/genética , Conservação dos Recursos Naturais , Produção Agrícola/história , Produção Agrícola/estatística & dados numéricos , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , Flores/crescimento & desenvolvimento , Fluxo Gênico , História do Século XX , História do Século XXI , Senegal
18.
Nat Commun ; 11(1): 5274, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33077747

RESUMO

Climate change is already affecting agro-ecosystems and threatening food security by reducing crop productivity and increasing harvest uncertainty. Mobilizing crop diversity could be an efficient way to mitigate its impact. We test this hypothesis in pearl millet, a nutritious staple cereal cultivated in arid and low-fertility soils in sub-Saharan Africa. We analyze the genomic diversity of 173 landraces collected in West Africa together with an extensive climate dataset composed of metrics of agronomic importance. Mapping the pearl millet genomic vulnerability at the 2050 horizon based on the current genomic-climate relationships, we identify the northern edge of the current areas of cultivation of both early and late flowering varieties as being the most vulnerable to climate change. We predict that the most vulnerable areas will benefit from using landraces that already grow in equivalent climate conditions today. However, such seed-exchange scenarios will require long distance and trans-frontier assisted migrations. Leveraging genetic diversity as a climate mitigation strategy in West Africa will thus require regional collaboration.

19.
Nat Commun ; 11(1): 4488, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32901040

RESUMO

Sustainable food production in the context of climate change necessitates diversification of agriculture and a more efficient utilization of plant genetic resources. Fonio millet (Digitaria exilis) is an orphan African cereal crop with a great potential for dryland agriculture. Here, we establish high-quality genomic resources to facilitate fonio improvement through molecular breeding. These include a chromosome-scale reference assembly and deep re-sequencing of 183 cultivated and wild Digitaria accessions, enabling insights into genetic diversity, population structure, and domestication. Fonio diversity is shaped by climatic, geographic, and ethnolinguistic factors. Two genes associated with seed size and shattering showed signatures of selection. Most known domestication genes from other cereal models however have not experienced strong selection in fonio, providing direct targets to rapidly improve this crop for agriculture in hot and dry environments.


Assuntos
Digitaria/genética , Grão Comestível/genética , África , Agricultura/métodos , Mudança Climática , Digitaria/classificação , Domesticação , Grão Comestível/classificação , Evolução Molecular , Variação Genética , Genoma de Planta , Anotação de Sequência Molecular , Seleção Genética , Especificidade da Espécie
20.
BMC Plant Biol ; 9: 123, 2009 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-19788737

RESUMO

BACKGROUND: In the past few years, functional genomics information has been rapidly accumulating on Rubiaceae species and especially on those belonging to the Coffea genus (coffee trees). An increasing number of expressed sequence tag (EST) data and EST- or genomic-derived microsatellite markers have been generated, together with Conserved Ortholog Set (COS) markers. This considerably facilitates comparative genomics or map-based genetic studies through the common use of orthologous loci across different species. Similar genomic information is available for e.g. tomato or potato, members of the Solanaceae family. Since both Rubiaceae and Solanaceae belong to the Euasterids I (lamiids) integration of information on genetic markers would be possible and lead to more efficient analyses and discovery of key loci involved in important traits such as fruit development, quality, and maturation, or adaptation. Our goal was to develop a comprehensive web data source for integrated information on validated orthologous markers in Rubiaceae. DESCRIPTION: MoccaDB is an online MySQL-PHP driven relational database that houses annotated and/or mapped microsatellite markers in Rubiaceae. In its current release, the database stores 638 markers that have been defined on 259 ESTs and 379 genomic sequences. Marker information was retrieved from 11 published works, and completed with original data on 132 microsatellite markers validated in our laboratory. DNA sequences were derived from three Coffea species/hybrids. Microsatellite markers were checked for similarity, in vitro tested for cross-amplification and diversity/polymorphism status in up to 38 Rubiaceae species belonging to the Cinchonoideae and Rubioideae subfamilies. Functional annotation was provided and some markers associated with described metabolic pathways were also integrated. Users can search the database for marker, sequence, map or diversity information through multi-option query forms. The retrieved data can be browsed and downloaded, along with protocols used, using a standard web browser. MoccaDB also integrates bioinformatics tools (CMap viewer and local BLAST) and hyperlinks to related external data sources (NCBI GenBank and PubMed, SOL Genomic Network database). CONCLUSION: We believe that MoccaDB will be extremely useful for all researchers working in the areas of comparative and functional genomics and molecular evolution, in general, and population analysis and association mapping of Rubiaceae and Solanaceae species, in particular.


Assuntos
Coffea/genética , Bases de Dados Genéticas , Genoma de Planta , Genômica/métodos , Biologia Computacional , DNA de Plantas/genética , Etiquetas de Sequências Expressas , Genes de Plantas , Internet , Repetições de Microssatélites , Polimorfismo Genético , Análise de Sequência de DNA , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA