Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Enzyme Inhib Med Chem ; 35(1): 432-459, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31899980

RESUMO

A series of new 2,4-bis[(substituted-aminomethyl)phenyl]quinoline, 1,3-bis[(substituted-aminomethyl)phenyl]isoquinoline, and 2,4-bis[(substituted-aminomethyl)phenyl]quinazoline derivatives was designed, synthesised, and evaluated in vitro against three protozoan parasites (Plasmodium falciparum, Leishmania donovani, and Trypanosoma brucei brucei). Biological results showed antiprotozoal activity with IC50 values in the µM range. In addition, the in vitro cytotoxicity of these original molecules was assessed with human HepG2 cells. The quinoline 1c was identified as the most potent antimalarial candidate with a ratio of cytotoxic to antiparasitic activities of 97 against the P. falciparum CQ-sensitive strain 3D7. The quinazoline 3h was also identified as the most potent trypanosomal candidate with a selectivity index (SI) of 43 on T. brucei brucei strain. Moreover, as the telomeres of the parasites P. falciparum and Trypanosoma are possible targets of this kind of nitrogen heterocyclic compounds, we have also investigated stabilisation of the Plasmodium and Trypanosoma telomeric G-quadruplexes by our best compounds through FRET melting assays.


Assuntos
Antiprotozoários/química , Antiprotozoários/farmacologia , Desenho de Fármacos , Quinolinas/química , Quinolinas/farmacologia , Antiprotozoários/síntese química , Células Hep G2 , Humanos , Leishmania donovani/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Quinolinas/síntese química , Relação Estrutura-Atividade , Trypanosoma brucei brucei/efeitos dos fármacos
2.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36015146

RESUMO

An antileishmanial structure−activity relationship (SAR) study focused on positions 2 and 8 of the imidazo[1,2-a]pyridine ring was conducted through the synthesis of 22 new derivatives. After being screened on the promatigote and axenic amastigote stages of Leishmania donovani and L. infantum, the best compounds were tested against the intracellular amastigote stage of L. infantum and evaluated regarding their in vitro physicochemical and pharmacokinetic properties, leading to the discovery of a new antileishmanial6-chloro-3-nitro-8-(pyridin-4-yl)-2-[(3,3,3-trifluoropropylsulfonyl)methyl]imidazo[1,2-a]pyridine hit. It displayed low cytotoxicities on both HepG2 and THP1 cell lines (CC50 > 100 µM) associated with a good activity against the intracellular amastigote stage of L. infantum (EC50 = 3.7 µM versus 0.4 and 15.9 µM for miltefosine and fexinidazole, used as antileishmanial drug references). Moreover, in comparison with previously reported derivatives in the studied series, this compound displayed greatly improved aqueous solubility, good mouse microsomal stability (T1/2 > 40 min) and high gastrointestinal permeability in a PAMPA model, making it an ideal candidate for further in vivo studies on an infectious mouse model.

3.
Pathogens ; 11(11)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36422591

RESUMO

A series of novel 2,9-bis[(substituted-aminomethyl)]-4,7-phenyl-1,10-phenanthroline derivatives was designed, synthesized, and evaluated in vitro against three protozoan parasites (Plasmodium falciparum, Leishmania donovani and Trypanosoma brucei brucei). Pharmacological results showed antiprotozoal activity with IC50 values in the sub and µM range. In addition, the in vitro cytotoxicity of these original molecules was assessed with human HepG2 cells. The substituted diphenylphenanthroline 1l was identified as the most potent antimalarial derivative with a ratio of cytotoxic to antiparasitic activities of 505.7 against the P. falciparum CQ-resistant strain W2. Against the promastigote forms of L. donovani, the phenanthrolines 1h, 1j, 1n and 1o were the most active with IC50 from 2.52 to 4.50 µM. The phenanthroline derivative 1o was also identified as the most potent trypanosomal candidate with a selectivity index (SI) of 91 on T. brucei brucei strain. FRET melting and native mass spectrometry experiments evidenced that the nitrogen heterocyclic derivatives bind the telomeric G-quadruplexes of P. falciparum and Trypanosoma. Moreover, as the telomeres of the parasites P. falciparum and Trypanosoma could be considered to be possible targets of this kind of nitrogen heterocyclic derivatives, their potential ability to stabilize the parasitic telomeric G-quadruplexes have been determined through the FRET melting assay and by native mass spectrometry.

4.
Parasitol Res ; 109(6): 1741-4, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21744021

RESUMO

Recently, the topic of diversity in Fasciola population in Egypt is controversial. The present study was performed to study the genetic diversity of isolated flukes based on microsatellites markers. Fasciola worms were collected from different hosts and geographical locations in Egypt. Control samples of Fasciola hepatica from France as well as Fasciola gigantica from Cameroon were included in the study. Collected flukes were identified morphologically and subjected for analysis using four microsatellite markers. Results of microsatellite profile (FM1 and FM2) proved that both species of Fasciola are distributed in Egypt irrespective of geographical location and host. Nevertheless, the microsatellite profile of some analyzed loci (FM2 and FM3) proved that Egyptian flukes showed more alleles compared to the reference ones. Differences of microsatellite profile in Egyptian isolates than that of corresponding reference samples indicate the remarkable diversity of these isolates. The present results highlighted the utility of microsatellite profile to discriminate between Fasciola species and to elucidate the diversity within the species. To our knowledge, this is the first time to study microsatellite polymorphism in Fasciola populations in Egypt.


Assuntos
Doenças dos Bovinos/parasitologia , Fasciola/genética , Fasciolíase/veterinária , Variação Genética , Repetições de Microssatélites , Doenças dos Ovinos/parasitologia , Animais , Búfalos/parasitologia , Bovinos , Doenças dos Bovinos/epidemiologia , DNA de Helmintos/genética , Egito/epidemiologia , Fasciola/classificação , Fasciola/isolamento & purificação , Fasciolíase/epidemiologia , Fasciolíase/parasitologia , Análise de Sequência de DNA , Ovinos , Doenças dos Ovinos/epidemiologia
5.
ACS Med Chem Lett ; 11(4): 464-472, 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32292551

RESUMO

An antikinetoplastid pharmacomodulation study was conducted at position 6 of the 8-nitroquinolin-2(1H)-one pharmacophore. Fifteen new derivatives were synthesized and evaluated in vitro against L. infantum, T. brucei brucei, and T. cruzi, in parallel with a cytotoxicity assay on the human HepG2 cell line. A potent and selective 6-bromo-substituted antitrypanosomal derivative 12 was revealed, presenting EC50 values of 12 and 500 nM on T. b. brucei trypomastigotes and T. cruzi amastigotes respectively, in comparison with four reference drugs (30 nM ≤ EC50 ≤ 13 µM). Moreover, compound 12 was not genotoxic in the comet assay and showed high in vitro microsomal stability (half life >40 min) as well as favorable pharmacokinetic behavior in the mouse after oral administration. Finally, molecule 12 (E° = -0.37 V/NHE) was shown to be bioactivated by type 1 nitroreductases, in both Leishmania and Trypanosoma, and appears to be a good candidate to search for novel antitrypanosomal lead compounds.

6.
Eur J Med Chem ; 206: 112668, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32795774

RESUMO

To study the antikinetoplastid 3-nitroimidazo[1,2-a]pyridine pharmacophore, a structure-activity relationship study was conducted through the synthesis of 26 original derivatives and their in vitro evaluation on both Leishmania spp and Trypanosoma brucei brucei. This SAR study showed that the antitrypanosomal pharmacophore was less restrictive than the antileishmanial one and highlighted positions 2, 6 and 8 of the imidazopyridine ring as key modulation points. None of the synthesized compounds allowed improvement in antileishmanial activity, compared to previous hit molecules in the series. Nevertheless, compound 8, the best antitrypanosomal molecule in this series (EC50 = 17 nM, SI = 2650 & E° = -0.6 V), was not only more active than all reference drugs and previous hit molecules in the series but also displayed improved aqueous solubility and better in vitro pharmacokinetic characteristics: good microsomal stability (T1/2 > 40 min), moderate albumin binding (77%) and moderate permeability across the blood brain barrier according to a PAMPA assay. Moreover, both micronucleus and comet assays showed that nitroaromatic molecule 8 was not genotoxic in vitro. It was evidenced that bioactivation of molecule 8 was operated by T. b. brucei type 1 nitroreductase, in the same manner as fexinidazole. Finally, a mouse pharmacokinetic study showed that 8 displayed good systemic exposure after both single and repeated oral administrations at 100 mg/kg (NOAEL) and satisfying plasmatic half-life (T1/2 = 7.7 h). Thus, molecule 8 appears as a good candidate for initiating a hit to lead drug discovery program.


Assuntos
Imidazóis/química , Imidazóis/farmacologia , Piridinas/química , Piridinas/farmacologia , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Animais , Dano ao DNA/efeitos dos fármacos , Descoberta de Drogas , Células Hep G2 , Humanos , Imidazóis/metabolismo , Imidazóis/farmacocinética , Concentração Inibidora 50 , Camundongos , Testes de Sensibilidade Parasitária , Piridinas/metabolismo , Piridinas/farmacocinética , Albumina Sérica/metabolismo , Relação Estrutura-Atividade , Tripanossomicidas/metabolismo , Tripanossomicidas/farmacocinética
7.
Eur J Med Chem ; 202: 112558, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32652409

RESUMO

An antikinetoplastid pharmacomodulation study was done at position 8 of a previously identified pharmacophore in 3-nitroimidazo[1,2-a]pyridine series. Twenty original derivatives bearing an alkynyl moiety were synthesized via a Sonogashira cross-coupling reaction and tested in vitro, highlighting 3 potent (40 nM ≤ EC50 blood stream form≤ 70 nM) and selective (500 ≤ SI ≤ 1800) anti-T. brucei brucei molecules (19, 21 and 22), in comparison with four reference drugs. Among these hit molecules, compound 19 also showed the same level of activity against T. cruzi (EC50 amastigotes = 1.2 µM) as benznidazole and fexinidazole. An in vitro comet assay showed that nitroaromatic derivative 19 was not genotoxic. It displayed a low redox potential value (-0.68 V/NHE) and was shown to be bioactivated by type 1 nitroreductases both in Leishmania and Trypanosoma. The SAR study indicated that an alcohol function improved aqueous solubility while maintaining good activity and low cytotoxicity when the hydroxyl group was at position beta of the alkyne triple bond. Hit-compound 19 was also evaluated regarding in vitro pharmacokinetic data: 19 is BBB permeable (PAMPA assay), has a 16 min microsomal half-life and a high albumin binding (98.5%). Moreover, compound 19 was orally absorbed and was well tolerated in mouse after both single and repeated administrations at 100 mg/kg. Its mouse plasma half-life (10 h) is also quite encouraging, paving the way toward further efficacy evaluations in parasitized mouse models, looking for a novel antitrypanosomal lead compound.


Assuntos
Nitroimidazóis/farmacologia , Piridinas/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos , Relação Dose-Resposta a Droga , Estrutura Molecular , Nitroimidazóis/síntese química , Nitroimidazóis/química , Testes de Sensibilidade Parasitária , Piridinas/síntese química , Piridinas/química , Relação Estrutura-Atividade , Tripanossomicidas/síntese química , Tripanossomicidas/química
8.
Trop Med Int Health ; 14(5): 529-34, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19298637

RESUMO

OBJECTIVES: To determine the role of the B-cell attracting chemokine CXCL-13, which may initiate B-cell trafficking and IgM production in diagnosing HAT meningo-encephalitis. METHODS: We determined CXCL-13 levels by ELISA on paired sera and CSF of 26 patients from Angola and of 16 controls (six endemic and ten non-endemic). Results were compared to standard stage determination markers and IgM intrathecal synthesis. RESULTS: CXCL-13 levels in patients' sera had a median value of 386.6 pg/ml and increased levels were associated with presence of trypanosomes in the CSF but not with other stage markers. CXCL-13 levels in patients' CSF had a median value of 80.9 pg/ml and increased levels were associated with all standard stage determination markers and IgM intrathecal synthesis. CONCLUSION: CXCL-13 levels in CSF increased significantly during the course of HAT. Hence the value of CXCL-13 for diagnosis, follow-up or as a marker of disease severity should be tested in a well-defined cohort study.


Assuntos
Infecções Protozoárias do Sistema Nervoso Central/sangue , Quimiocina CXCL13/sangue , Encefalite/sangue , Meningite/sangue , Tripanossomíase Africana/sangue , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Angola/epidemiologia , Linfócitos B/metabolismo , Biomarcadores/sangue , Infecções Protozoárias do Sistema Nervoso Central/diagnóstico , Infecções Protozoárias do Sistema Nervoso Central/epidemiologia , Criança , Encefalite/epidemiologia , Encefalite/parasitologia , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Meningite/epidemiologia , Meningite/parasitologia , Pessoa de Meia-Idade , Tripanossomíase Africana/diagnóstico , Tripanossomíase Africana/epidemiologia , Adulto Jovem
9.
Biomed Res Int ; 2019: 6152489, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31080827

RESUMO

Infection with Toxoplasma gondii has a major implication in public health. Toxoplasma gondii is an obligate intracellular protozoan parasite that can infect all nucleated cells belonging to a wide range of host species. One of the particularities of this parasite is its invasion and persistence in host cells of immunocompetent people. This infection is usually asymptomatic. In immunocompromised patients, the infection is severe and symptomatic. The mechanisms by which T. gondii persists are poorly studied in humans. In mouse models, many aspects of the interaction between the parasite and the host cells are being studied. Apoptosis is one of these mechanisms that could be modulated by Toxoplasma to persist in host cells. Indeed, Toxoplasma has often been implicated in the regulation of apoptosis and viability mechanisms in both human and murine infection models. Several of these studies centered on the regulation of apoptosis pathways have revealed interference of this parasite with host cell immunity, cell signalling, and invasion mechanisms. This review provides an overview of recent studies concerning the effect of Toxoplasma on different apoptotic pathways in infected host cells.


Assuntos
Apoptose/imunologia , Interações Hospedeiro-Parasita/imunologia , Imunidade Celular/imunologia , Toxoplasma/patogenicidade , Toxoplasmose/imunologia , Animais , Apoptose/fisiologia , Sobrevivência Celular , Modelos Animais de Doenças , Humanos , Camundongos , Transdução de Sinais/imunologia
10.
PLoS Negl Trop Dis ; 13(8): e0007631, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31425540

RESUMO

OBJECTIVE: Where human African trypanosomiasis (HAT) patients are seen, failure to microscopically diagnose infections by Trypanosoma brucei gambiense in blood smears and/or cerebrospinal fluid (CSF) in the critical early stages of the disease is the single most important factor in treatment failure, a result of delayed treatment onset or its absence. We hypothesized that the enhanced sensitivity of detergent-enhanced loop-mediated isothermal amplification (LAMP) will allow for point of care (POC) detection of African trypanosomes in the CSF of HAT patients where the probability for detecting a single parasite or parasite DNA molecule in 1 µL of CSF sample is negligible by current methods. METHODOLOGY: We used LAMP targeting the multicopy pan-T. brucei repetitive insertion mobile element (RIME LAMP) and the Trypanosoma brucei gambiense 5.8S rRNA-internal transcribed spacer 2 gene (TBG1 LAMP). We tested 1 µL out of 20 µL sham or Triton X-100 treated CSFs from 73 stage-1 and 77 stage-2 HAT patients from the Central African Republic and 100 CSF negative controls. RESULTS: Under sham conditions, parasite DNA was detected by RIME and TBG1 LAMP in 1.4% of the stage-1 and stage-2 gambiense HAT CSF samples tested. After sample incubation with detergent, the number of LAMP parasite positive stage-2 CSF's increased to 26%, a value which included the 2 of the 4 CSF samples where trypanosomes were identified microscopically. Unexpected was the 41% increase in parasite positive stage-1 CSF's detected by LAMP. Cohen's kappa coefficients for RIME versus TBG1 LAMP of 0.92 (95%CI: 0.82-1.00) for stage-1 and 0.90 (95%CI: 0.80-1.00) for stage-2 reflected a high level of agreement between the data sets indicating that the results were not due to amplicon contamination, data confirmed in χ2 tests (p<0.001) and Fisher's exact probability test (p = 4.7e-13). CONCLUSION: This study detected genomic trypanosome DNA in the CSF independent of the HAT stage and may be consistent with early CNS entry and other scenarios that identify critical knowledge gaps for future studies. Detergent-enhanced LAMP could be applicable for non-invasive African trypanosome detection in human skin and saliva or as an epidemiologic tool for the determination of human (or animal) African trypanosome prevalence in areas where chronically low parasitemias are present.


Assuntos
Líquido Cefalorraquidiano/parasitologia , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Índice de Gravidade de Doença , Trypanosoma/isolamento & purificação , Tripanossomíase Africana/diagnóstico , Tripanossomíase Africana/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , República Centro-Africana , Criança , Pré-Escolar , DNA de Protozoário/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/genética , Detergentes/metabolismo , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , RNA Ribossômico 5,8S/genética , Sensibilidade e Especificidade , Trypanosoma/genética , Adulto Jovem
11.
Biomed Res Int ; 2019: 6070176, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31886231

RESUMO

Human African Trypanosomiasis may become manageable in the next decade with fexinidazole. However, currently stage diagnosis remains difficult to implement in the field and requires a lumbar puncture. Our study of an Angolan cohort of T. b. gambiense-infected patients used other staging criteria than those recommended by the WHO. We compared WHO criteria (cell count and parasite identification in the CSF) with two biomarkers (neopterin and CXCL-13) which have proven potential to diagnose disease stage or relapse. Biological, clinical, and neurological data were analysed from a cohort of 83 patients. A neopterin concentration below 15.5 nmol/L in the CSF denoted patients with stage 1 disease, and a concentration above 60.31 nmol/L characterized patients with advanced stage 2 (trypanosomes in CSF and/or cytorachia higher than 20 cells) disease. CXCL-13 levels below 91.208 pg/mL denoted patients with stage 1 disease, and levels of CXCL-13 above 395.45 pg/mL denoted patients with advanced stage 2 disease. Values between these cut-offs may represent patients with intermediate stage disease. Our work supports the existence of an intermediate stage in HAT, and CXCL-13 and neopterin levels may help to characterize it.


Assuntos
Quimiocina CXCL13/líquido cefalorraquidiano , Neopterina/líquido cefalorraquidiano , Tripanossomíase Africana , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Angola , Biomarcadores/líquido cefalorraquidiano , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Curva ROC , Tripanossomíase Africana/líquido cefalorraquidiano , Tripanossomíase Africana/classificação , Tripanossomíase Africana/diagnóstico , Adulto Jovem
12.
J Proteomics ; 196: 150-161, 2019 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-30414516

RESUMO

Human African trypanosomiasis (HAT) is a neglected tropical disease that is endemic in sub-Saharan Africa. Control of the disease has been recently improved by better screening and treatment strategies, and the disease is on the WHO list of possible elimination. However, some physiopathological aspects of the disease transmission and progression remain unclear. We propose a new proteomic approach to identify new targets and thus possible new biomarkers of the disease. We also focused our attention on fluids classically associated with HAT (serum and cerebrospinal fluid (CSF)) and on the more easily accessible biological fluids urine and saliva. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) established the proteomic profile of patients with early and late stage disease. The serum, CSF, urine and saliva of 3 uninfected controls, 3 early stage patients and 4 late stage patients were analyzed. Among proteins identified, in CSF, urine and saliva, respectively, 37, 8 and 24 proteins were differentially expressed and showed particular interest with regards to their function. The most promising proteins (Neogenin, Neuroserpin, secretogranin 2 in CSF; moesin in urine and intelectin 2 in saliva) were quantified by enzyme-linked immunosorbent assay in a confirmatory cohort of 14 uninfected controls, 23 patients with early stage disease and 43 patients with late stage disease. The potential of two proteins, neuroserpin and moesin, with the latter present in urine, were further characterized. Our results showed the potential of proteomic analysis to discover new biomarkers and provide the basis of the establishment of a new proteomic catalogue applied to HAT-infected subjects and controls. SIGNIFICANCE: Sleeping sickness, also called Human African Trypanosomiasis (HAT), is a parasitic infection caused by a parasitic protozoan, Trypanosoma brucei gambiense or T. b. rhodesiense which are transmitted via an infected tsetse fly: Glossina. For both, the haemolymphatic stage (or first stage) signs and symptoms are intermittent fever, lymphadenopathy, hepatosplenomegaly, headaches, pruritus, and for T. b. rhodesiense infection a chancre is often formed at the bite site. Meningoencephalitic stage (or second stage) occurs when parasites invade the CNS, it is characterised by neurological signs and symptoms such as altered gait, tremors, neuropathy, somnolence which can lead to coma and death if untreated. first stage of the disease is characterizing by fevers, headaches, itchiness, and joint pains and progressive lethargy corresponding to the second stage with confusion, poor coordination, numbness and trouble sleeping. Actually, diagnosing HAT requires specialized expertise and significant resources such as well-equipped health centers and qualified staff. Such resources are lacking in many endemic areas that are often in rural locales, so many individuals with HAT die before the diagnosis is established. In this study, we analysed by mass spectrometry the entire proteome of serum, CSF, urine and saliva samples from infected and non-infected Angolan individuals to define new biomarkers of the disease. This work of proteomics analysis is a preliminary stage to the characterization of the whole proteome, of these 4 biological fluids, of HAT patients. We have identified 69 new biomarkers. Five of them have been thoroughly investigated by ELISA quantification. Neuroserpine and Moesin are respectively promising new biomarkers in CSF and urine's patient for a better diagnosis.


Assuntos
Líquidos Corporais/metabolismo , Proteoma/metabolismo , Proteômica , Trypanosoma brucei gambiense/metabolismo , Tripanossomíase Africana/metabolismo , Adolescente , Adulto , Idoso , Biomarcadores/metabolismo , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
13.
ACS Med Chem Lett ; 10(1): 34-39, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30655943

RESUMO

Twenty nine original 3-nitroimidazo[1,2-a]pyridine derivatives, bearing a phenylthio (or benzylthio) moiety at position 8 of the scaffold, were synthesized. In vitro evaluation highlighted compound 5 as an antiparasitic hit molecule displaying low cytotoxicity for the human HepG2 cell line (CC50 > 100 µM) alongside good antileishmanial activities (IC50 = 1-2.1 µM) against L. donovani, L. infantum, and L. major; and good antitrypanosomal activities (IC50 = 1.3-2.2 µM) against T. brucei brucei and T. cruzi, in comparison to several reference drugs such as miltefosine, fexinidazole, eflornithine, and benznidazole (IC50 = 0.6 to 13.3 µM). Molecule 5, presenting a low reduction potential (E° = -0.63 V), was shown to be selectively bioactivated by the L. donovani type 1 nitroreductase (NTR1). Importantly, molecule 5 was neither mutagenic (negative Ames test), nor genotoxic (negative comet assay), in contrast to many other nitroaromatics. Molecule 5 showed poor microsomal stability; however, its main metabolite (sulfoxide) remained both active and nonmutagenic, making 5 a good candidate for further in vivo studies.

14.
ChemMedChem ; 13(20): 2217-2228, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30221468

RESUMO

An antikinetoplastid pharmacomodulation study at position 3 of the recently described hit molecule 3-bromo-8-nitroquinolin-2(1H)-one was conducted. Twenty-four derivatives were synthesised using the Suzuki-Miyaura cross-coupling reaction and evaluated in vitro on both Leishmania infantum axenic amastigotes and Trypanosoma brucei brucei trypomastigotes. Introduction of a para-carboxyphenyl group at position 3 of the scaffold led to the selective antitrypanosomal hit molecule 3-(4-carboxyphenyl)-8-nitroquinolin-2(1H)-one (21) with a lower reduction potential (-0.56 V) than the initial hit (-0.45 V). Compound 21 displays micromolar antitrypanosomal activity (IC50 =1.5 µm) and low cytotoxicity on the human HepG2 cell line (CC50 =120 µm), having a higher selectivity index (SI=80) than the reference drug eflornithine. Contrary to results previously obtained in this series, hit compound 21 is inactive toward L. infantum and is not efficiently bioactivated by T. brucei brucei type I nitroreductase, which suggests the existence of an alternative mechanism of action.


Assuntos
Nitroquinolinas/farmacologia , Quinolonas/farmacologia , Tripanossomicidas/farmacologia , Catálise , Células Hep G2 , Humanos , Leishmania donovani/efeitos dos fármacos , Leishmania infantum/efeitos dos fármacos , Estrutura Molecular , Nitroquinolinas/síntese química , Nitroquinolinas/química , Nitroquinolinas/toxicidade , Paládio/química , Testes de Sensibilidade Parasitária , Quinolonas/síntese química , Quinolonas/química , Quinolonas/toxicidade , Tripanossomicidas/síntese química , Tripanossomicidas/química , Tripanossomicidas/toxicidade , Trypanosoma brucei brucei/efeitos dos fármacos
15.
Chem Biol Drug Des ; 91(5): 974-995, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29266861

RESUMO

A series of new 2,9-bis[(substituted-aminomethyl)phenyl]-1,10-phenanthroline derivatives was synthesized, and the compounds were screened in vitro against three protozoan parasites (Plasmodium falciparum, Leishmania donovani, and Trypanosoma brucei brucei). Biological results showed antiparasitic activity with IC50 values in the µm range. The in vitro cytotoxicity of these molecules was assessed by incubation with human HepG2 cells; for some derivatives, cytotoxicity was observed at significantly higher concentrations than antiparasitic activity. The 2,9-bis[(substituted-aminomethyl)phenyl]-1,10-phenanthroline 1h was identified as the most potent antimalarial candidate with ratios of cytotoxic-to-antiparasitic activities of 107 and 39 against a chloroquine-sensitive and a chloroquine-resistant strain of P. falciparum, respectively. As the telomeres of the parasite P. falciparum are the likely target of this compound, we investigated stabilization of the Plasmodium telomeric G-quadruplexes by our phenanthroline derivatives through a FRET melting assay. The ligands 1f and 1m were noticed to be more specific for FPf8T with higher stabilization for FPf8T than for the human F21T sequence.


Assuntos
Antiprotozoários/síntese química , Desenho de Fármacos , Fenantrolinas/química , Antiprotozoários/metabolismo , Antiprotozoários/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Quadruplex G , Células Hep G2 , Humanos , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/crescimento & desenvolvimento , Ligantes , Fenantrolinas/metabolismo , Fenantrolinas/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Relação Estrutura-Atividade , Temperatura de Transição , Trypanosoma brucei brucei/efeitos dos fármacos
16.
Eur J Med Chem ; 155: 135-152, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29885575

RESUMO

To study the antiparasitic 8-nitroquinolin-2(1H)-one pharmacophore, a series of 31 derivatives was synthesized in 1-5 steps and evaluated in vitro against both Leishmania infantum and Trypanosoma brucei brucei. In parallel, the reduction potential of all molecules was measured by cyclic voltammetry. Structure-activity relationships first indicated that antileishmanial activity depends on an intramolecular hydrogen bond (described by X-ray diffraction) between the lactam function and the nitro group, which is responsible for an important shift of the redox potential (+0.3 V in comparison with 8-nitroquinoline). With the assistance of computational chemistry, a set of derivatives presenting a large range of redox potentials (from -1.1 to -0.45 V) was designed and provided a list of suitable molecules to be synthesized and tested. This approach highlighted that, in this series, only substrates with a redox potential above -0.6 V display activity toward L. infantum. Nevertheless, such relation between redox potentials and in vitro antiparasitic activities was not observed in T. b. brucei. Compound 22 is a new hit compound in the series, displaying both antileishmanial and antitrypanosomal activity along with a low cytotoxicity on the human HepG2 cell line. Compound 22 is selectively bioactivated by the type 1 nitroreductases (NTR1) of L. donovani and T. brucei brucei. Moreover, despite being mutagenic in the Ames test, as most of nitroaromatic derivatives, compound 22 was not genotoxic in the comet assay. Preliminary in vitro pharmacokinetic parameters were finally determined and pointed out a good in vitro microsomal stability (half-life > 40 min) and a 92% binding to human albumin.


Assuntos
Antiprotozoários/farmacologia , Técnicas Eletroquímicas , Kinetoplastida/efeitos dos fármacos , Nitroquinolinas/farmacologia , Nitrorredutases/metabolismo , Antiprotozoários/síntese química , Antiprotozoários/química , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Kinetoplastida/enzimologia , Leishmania infantum/efeitos dos fármacos , Leishmania infantum/enzimologia , Estrutura Molecular , Nitroquinolinas/síntese química , Nitroquinolinas/química , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/enzimologia
17.
Eur J Med Chem ; 157: 115-126, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30092366

RESUMO

Based on a previously identified antileishmanial 6,8-dibromo-3-nitroimidazo[1,2-a]pyridine derivative, a Suzuki-Miyaura coupling reaction at position 8 of the scaffold was studied and optimized from a 8-bromo-6-chloro-3-nitroimidazo[1,2-a]pyridine substrate. Twenty-one original derivatives were prepared, screened in vitro for activity against L. infantum axenic amastigotes and T. brucei brucei trypomastigotes and evaluated for their cytotoxicity on the HepG2 human cell line. Thus, 7 antileishmanial hit compounds were identified, displaying IC50 values in the 1.1-3 µM range. Compounds 13 and 23, the 2 most selective molecules (SI = >18 or >17) were additionally tested on both the promastigote and intramacrophage amastigote stages of L. donovani. The two molecules presented a good activity (IC50 = 1.2-1.3 µM) on the promastigote stage but only molecule 23, bearing a 4-pyridinyl substituent at position 8, was active on the intracellular amastigote stage, with a good IC50 value (2.3 µM), slightly lower than the one of miltefosine (IC50 = 4.3 µM). The antiparasitic screening also revealed 8 antitrypanosomal hit compounds, including 14 and 20, 2 very active (IC50 = 0.04-0.16 µM) and selective (SI = >313 to 550) molecules toward T. brucei brucei, in comparison with drug-candidate fexinidazole (IC50 = 0.6 & SI > 333) or reference drugs suramin and eflornithine (respective IC50 = 0.03 and 13.3 µM). Introducing an aryl moiety at position 8 of the scaffold quite significantly increased the antitrypanosomal activity of the pharmacophore. Antikinetoplastid molecules 13, 14, 20 and 23 were assessed for bioactivation by parasitic nitroreductases (either in L. donovani or in T. brucei brucei), using genetically modified parasite strains that over-express NTRs: all these molecules are substrates of type 1 nitroreductases (NTR1), such as those that are responsible for the bioactivation of fexinidazole. Reduction potentials measured for these 4 hit compounds were higher than that of fexinidazole (-0.83 V), ranging from -0.70 to -0.64 V.


Assuntos
Antineoplásicos/farmacologia , Leishmania donovani/efeitos dos fármacos , Nitrorredutases/metabolismo , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Humanos , Leishmania donovani/metabolismo , Modelos Moleculares , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Tripanossomicidas/química , Tripanossomicidas/metabolismo , Trypanosoma brucei brucei/metabolismo
18.
Int J Parasitol ; 36(9): 1057-65, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16765963

RESUMO

Trypanosoma brucei gambiense infection is an important public health challenge in sub-Saharan Africa. This parasitic disease is difficult to diagnose due to insidious clinical signs and transient parasitaemias. The clinical course is marked by two stages of increasing disease severity. An early systemic parasitic invasion is followed by the development of a progressive meningo-encephalitis. During this latter stage, a broad spectrum of neurological signs appears, which finally lead to a demyelinating and fatal stage if untreated. Treatment is toxic and difficult to administer when the CNS is invaded. Therefore, accurate diagnostic methods for stage determination are needed. The classically used criteria are not sufficiently specific and mechanisms of parasite invasion through the blood-brain barrier remain poorly understood. As cytokines/chemokines are involved in the early recruitment of leukocytes into the CNS, this study has focused on their potential value to define the onset of CNS involvement. Levels of monocyte chemoattractant protein-1/CCL-2, macrophage inflammatory protein-1alpha/CCL-3, IL-8/CXCL-8, regulated upon activation T cell expressed and secreted (RANTES)/CCL-5 and IL-1beta were measured in paired sera and CSF from 57 patients and four controls. Patients were classified into three groups (stage 1, intermediate and stage 2) according to current field criteria for stage determination (CSF cell count, presence of trypanosomes in CSF and neurological signs). In sera, cytokine/chemokine levels were poorly related to disease stage. Only CXCL-8 was higher in stage 1 patients when compared with stage 2 and CCL-5 was higher in controls when compared with patients. In contrast, in CSF the expression of the selected cytokines, except CCL-5, was associated with the presence of neurological signs, demonstrating their diagnostic value. We observed a relationship between the presence of trypanosomes or trypanosome-related compounds in CSF and levels of IL-1beta, CXCL-8, CCL-2 and CCL-3. These cytokines and chemokines may be triggered by the parasite and hence are potential markers of CNS invasion.


Assuntos
Infecções Protozoárias do Sistema Nervoso Central/diagnóstico , Quimiocinas/análise , Trypanosoma brucei gambiense/isolamento & purificação , Tripanossomíase Africana/diagnóstico , Adolescente , Adulto , Animais , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Barreira Hematoencefálica , Quimiocinas/sangue , Quimiocinas/líquido cefalorraquidiano , Criança , Citocinas/sangue , Citocinas/líquido cefalorraquidiano , Progressão da Doença , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Pessoa de Meia-Idade , Índice de Gravidade de Doença
19.
PLoS Negl Trop Dis ; 10(12): e0005140, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27941966

RESUMO

Treatment for human African trypanosomiasis is dependent on the species of trypanosome causing the disease and the stage of the disease (stage 1 defined by parasites being present in blood and lymphatics whilst for stage 2, parasites are found beyond the blood-brain barrier in the cerebrospinal fluid (CSF)). Currently, staging relies upon detecting the very low number of parasites or elevated white blood cell numbers in CSF. Improved staging is desirable, as is the elimination of the need for lumbar puncture. Here we use metabolomics to probe samples of CSF, plasma and urine from 40 Angolan patients infected with Trypanosoma brucei gambiense, at different disease stages. Urine samples provided no robust markers indicative of infection or stage of infection due to inherent variability in urine concentrations. Biomarkers in CSF were able to distinguish patients at stage 1 or advanced stage 2 with absolute specificity. Eleven metabolites clearly distinguished the stage in most patients and two of these (neopterin and 5-hydroxytryptophan) showed 100% specificity and sensitivity between our stage 1 and advanced stage 2 samples. Neopterin is an inflammatory biomarker previously shown in CSF of stage 2 but not stage 1 patients. 5-hydroxytryptophan is an important metabolite in the serotonin synthetic pathway, the key pathway in determining somnolence, thus offering a possible link to the eponymous symptoms of "sleeping sickness". Plasma also yielded several biomarkers clearly indicative of the presence (87% sensitivity and 95% specificity) and stage of disease (92% sensitivity and 81% specificity). A logistic regression model including these metabolites showed clear separation of patients being either at stage 1 or advanced stage 2 or indeed diseased (both stages) versus control.


Assuntos
Biomarcadores/análise , Trypanosoma brucei gambiense/metabolismo , Tripanossomíase Africana/diagnóstico , Tripanossomíase Africana/parasitologia , 5-Hidroxitriptofano/sangue , 5-Hidroxitriptofano/líquido cefalorraquidiano , 5-Hidroxitriptofano/isolamento & purificação , 5-Hidroxitriptofano/urina , Adolescente , Adulto , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Biomarcadores/urina , Barreira Hematoencefálica , Feminino , Humanos , Masculino , Metabolômica/métodos , Neopterina/sangue , Neopterina/líquido cefalorraquidiano , Neopterina/isolamento & purificação , Neopterina/urina , Análise de Regressão , Sensibilidade e Especificidade , Adulto Jovem
20.
Mol Biochem Parasitol ; 139(1): 41-9, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15610818

RESUMO

During human African trypanosomiasis, trypanosomes (Trypanosoma brucei gambiense or T. b. rhodesiense) invade the central nervous system (CNS). Mechanisms of blood-brain barrier and blood-cerebrospinal fluid barrier leakage remain unknown. To better understand the relationships between trypanosomes and endothelial cells, the principal cell population of those barriers, we cultured a human bone marrow endothelial cell (HBMEC) line in the presence or absence of T. b. gambiense, to study cell activation. As indicated by NF-kappaB translocation to the nucleus, cells were activated in the presence of trypanosomes. The expression of the adhesion molecules ICAM-1, E-selectin and VCAM-1 increased in co-culture. The parasites induced the synthesis of the pro-inflammatory cytokines TNF-alpha, IL-6 and IL-8, and of nitric oxide (NO) by HBMEC. Cells were also cultured in the presence of parasite variant surface glycoproteins (VSGs), and an increase in TNF-alpha, IL-6, IL-8, and NO synthesis was also observed. Soluble VSGs induced NF-kappaB translocation, and the expression of adhesion molecules, indicating that they could possibly be the molecular soluble factor responsible for endothelial cell activation. The permeability coefficient of HBMEC layer increased when cells were cultured in the presence of trypanosomes, parasite culture supernatant, or VSGs. Thus, T. b. gambiense can activate endothelial cells in vitro, through the release of soluble activating factors. Consequences of endothelial cell activation by parasite products may include a potentiation of the inflammatory reaction, leukocyte recruitment, passage of trypanosomes into the CNS, and barrier dysfunction observed during CNS involvement of HAT.


Assuntos
Células Endoteliais/metabolismo , Células Endoteliais/parasitologia , Trypanosoma brucei brucei/fisiologia , Animais , Permeabilidade da Membrana Celular , Células Cultivadas , Selectina E/biossíntese , Regulação da Expressão Gênica , Humanos , Molécula 1 de Adesão Intercelular/biossíntese , Interleucina-6/biossíntese , Interleucina-8/biossíntese , NF-kappa B/metabolismo , Óxido Nítrico/biossíntese , Fator de Necrose Tumoral alfa/biossíntese , Glicoproteínas Variantes de Superfície de Trypanosoma/metabolismo , Molécula 1 de Adesão de Célula Vascular/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA