Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Proc Natl Acad Sci U S A ; 113(26): 7136-41, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27298375

RESUMO

The breakdown of plant cell wall (PCW) glycans is an important biological and industrial process. Noncatalytic carbohydrate binding modules (CBMs) fulfill a critical targeting function in PCW depolymerization. Defining the portfolio of CBMs, the CBMome, of a PCW degrading system is central to understanding the mechanisms by which microbes depolymerize their target substrates. Ruminococcus flavefaciens, a major PCW degrading bacterium, assembles its catalytic apparatus into a large multienzyme complex, the cellulosome. Significantly, bioinformatic analyses of the R. flavefaciens cellulosome failed to identify a CBM predicted to bind to crystalline cellulose, a key feature of the CBMome of other PCW degrading systems. Here, high throughput screening of 177 protein modules of unknown function was used to determine the complete CBMome of R. flavefaciens The data identified six previously unidentified CBM families that targeted ß-glucans, ß-mannans, and the pectic polysaccharide homogalacturonan. The crystal structures of four CBMs, in conjunction with site-directed mutagenesis, provide insight into the mechanism of ligand recognition. In the CBMs that recognize ß-glucans and ß-mannans, differences in the conformation of conserved aromatic residues had a significant impact on the topology of the ligand binding cleft and thus ligand specificity. A cluster of basic residues in CBM77 confers calcium-independent recognition of homogalacturonan, indicating that the carboxylates of galacturonic acid are key specificity determinants. This report shows that the extended repertoire of proteins in the cellulosome of R. flavefaciens contributes to an extended CBMome that supports efficient PCW degradation in the absence of CBMs that specifically target crystalline cellulose.


Assuntos
Proteínas de Bactérias/metabolismo , Celulossomas/metabolismo , Polissacarídeos/metabolismo , Ruminococcus/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Celulossomas/química , Celulossomas/genética , Cristalografia por Raios X , Modelos Moleculares , Polissacarídeos/química , Ligação Proteica , Ruminococcus/química , Ruminococcus/genética
2.
Environ Microbiol ; 19(3): 1103-1119, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27902881

RESUMO

Magnetotactic bacteria (MTB) are a group of phylogenetically and physiologically diverse Gram-negative bacteria that synthesize intracellular magnetic crystals named magnetosomes. MTB are affiliated with three classes of Proteobacteria phylum, Nitrospirae phylum, Omnitrophica phylum and probably with the candidate phylum Latescibacteria. The evolutionary origin and physiological diversity of MTB compared with other bacterial taxonomic groups remain to be illustrated. Here, we analysed the genome of the marine magneto-ovoid strain MO-1 and found that it is closely related to Magnetococcus marinus MC-1. Detailed analyses of the ribosomal proteins and whole proteomes of 390 genomes reveal that, among the Proteobacteria analysed, only MO-1 and MC-1 have coding sequences (CDSs) with a similarly high proportion of origins from Alphaproteobacteria, Betaproteobacteria, Deltaproteobacteria and Gammaproteobacteria. Interestingly, a comparative metabolic network analysis with anoxic network enzymes from sequenced MTB and non-MTB successfully allows the eventual prediction of an organism with a metabolic profile compatible for magnetosome production. Altogether, our genomic analysis reveals multiple origins of MO-1 and M. marinus MC-1 genomes and suggests a metabolism-restriction model for explaining whether a bacterium could become an MTB upon acquisition of magnetosome encoding genes.


Assuntos
Genoma Bacteriano , Magnetossomos , Proteobactérias/classificação , Proteobactérias/genética , Sequência de Bases , Deltaproteobacteria/genética , Evolução Molecular , Magnetossomos/genética , Filogenia , Proteobactérias/ultraestrutura
3.
Nature ; 464(7291): 1033-8, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20348908

RESUMO

The Périgord black truffle (Tuber melanosporum Vittad.) and the Piedmont white truffle dominate today's truffle market. The hypogeous fruiting body of T. melanosporum is a gastronomic delicacy produced by an ectomycorrhizal symbiont endemic to calcareous soils in southern Europe. The worldwide demand for this truffle has fuelled intense efforts at cultivation. Identification of processes that condition and trigger fruit body and symbiosis formation, ultimately leading to efficient crop production, will be facilitated by a thorough analysis of truffle genomic traits. In the ectomycorrhizal Laccaria bicolor, the expansion of gene families may have acted as a 'symbiosis toolbox'. This feature may however reflect evolution of this particular taxon and not a general trait shared by all ectomycorrhizal species. To get a better understanding of the biology and evolution of the ectomycorrhizal symbiosis, we report here the sequence of the haploid genome of T. melanosporum, which at approximately 125 megabases is the largest and most complex fungal genome sequenced so far. This expansion results from a proliferation of transposable elements accounting for approximately 58% of the genome. In contrast, this genome only contains approximately 7,500 protein-coding genes with very rare multigene families. It lacks large sets of carbohydrate cleaving enzymes, but a few of them involved in degradation of plant cell walls are induced in symbiotic tissues. The latter feature and the upregulation of genes encoding for lipases and multicopper oxidases suggest that T. melanosporum degrades its host cell walls during colonization. Symbiosis induces an increased expression of carbohydrate and amino acid transporters in both L. bicolor and T. melanosporum, but the comparison of genomic traits in the two ectomycorrhizal fungi showed that genetic predispositions for symbiosis-'the symbiosis toolbox'-evolved along different ways in ascomycetes and basidiomycetes.


Assuntos
Ascomicetos/genética , Evolução Molecular , Genoma Fúngico/genética , Simbiose/genética , Carboidratos , Elementos de DNA Transponíveis/genética , Carpóforos/metabolismo , Genes Fúngicos/genética , Genômica , Haploidia , Dados de Sequência Molecular , Análise de Sequência de DNA , Enxofre/metabolismo
4.
Nature ; 464(7287): 367-73, 2010 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-20237561

RESUMO

Fusarium species are among the most important phytopathogenic and toxigenic fungi. To understand the molecular underpinnings of pathogenicity in the genus Fusarium, we compared the genomes of three phenotypically diverse species: Fusarium graminearum, Fusarium verticillioides and Fusarium oxysporum f. sp. lycopersici. Our analysis revealed lineage-specific (LS) genomic regions in F. oxysporum that include four entire chromosomes and account for more than one-quarter of the genome. LS regions are rich in transposons and genes with distinct evolutionary profiles but related to pathogenicity, indicative of horizontal acquisition. Experimentally, we demonstrate the transfer of two LS chromosomes between strains of F. oxysporum, converting a non-pathogenic strain into a pathogen. Transfer of LS chromosomes between otherwise genetically isolated strains explains the polyphyletic origin of host specificity and the emergence of new pathogenic lineages in F. oxysporum. These findings put the evolution of fungal pathogenicity into a new perspective.


Assuntos
Cromossomos Fúngicos/genética , Fusarium/genética , Fusarium/patogenicidade , Genoma Fúngico/genética , Genômica , Evolução Molecular , Fusarium/classificação , Interações Hospedeiro-Parasita/genética , Família Multigênica/genética , Fenótipo , Filogenia , Proteoma/genética , Análise de Sequência de DNA , Sintenia/genética , Virulência/genética
5.
Nucleic Acids Res ; 42(Database issue): D490-5, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24270786

RESUMO

The Carbohydrate-Active Enzymes database (CAZy; http://www.cazy.org) provides online and continuously updated access to a sequence-based family classification linking the sequence to the specificity and 3D structure of the enzymes that assemble, modify and breakdown oligo- and polysaccharides. Functional and 3D structural information is added and curated on a regular basis based on the available literature. In addition to the use of the database by enzymologists seeking curated information on CAZymes, the dissemination of a stable nomenclature for these enzymes is probably a major contribution of CAZy. The past few years have seen the expansion of the CAZy classification scheme to new families, the development of subfamilies in several families and the power of CAZy for the analysis of genomes and metagenomes. This article outlines the changes that have occurred in CAZy during the past 5 years and presents our novel effort to display the resolution and the carbohydrate ligands in crystallographic complexes of CAZymes.


Assuntos
Metabolismo dos Carboidratos , Bases de Dados de Proteínas , Enzimas/química , Carboidratos/química , Enzimas/classificação , Enzimas/genética , Genoma , Internet , Ligantes , Conformação Proteica , Análise de Sequência de Proteína , Especificidade por Substrato
6.
J Biol Chem ; 289(9): 6199-211, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24407291

RESUMO

Ulvans are cell wall matrix polysaccharides in green algae belonging to the genus Ulva. Enzymatic degradation of the polysaccharide by ulvan lyases leads to the production of oligosaccharides with an unsaturated ß-glucuronyl residue located at the non-reducing end. Exploration of the genomic environment around the Nonlabens ulvanivorans (previously Percicivirga ulvanivorans) ulvan lyase revealed a gene highly similar to known unsaturated uronyl hydrolases classified in the CAZy glycoside hydrolase family 105. The gene was cloned, the protein was overexpressed in Escherichia coli, and enzymology experiments demonstrated its unsaturated ß-glucuronyl activity. Kinetic analysis of purified oligo-ulvans incubated with the new enzyme showed that the full substrate specificity is attained by three subsites that preferentially bind anionic residues (sulfated rhamnose, glucuronic/iduronic acid). The three-dimensional crystal structure of the native enzyme reveals that a trimeric organization is required for substrate binding and recognition at the +2 binding subsite. This novel unsaturated ß-glucuronyl hydrolase is part of a previously uncharacterized subgroup of GH105 members and exhibits only a very limited sequence similarity to known unsaturated ß-glucuronyl sequences previously found only in family GH88. Clan-O formed by families GH88 and GH105 was singular in the fact that it covered families acting on both axial and equatorial glycosidic linkages, respectively. The overall comparison of active site structures between enzymes from these two families highlights how that within family GH105, and unlike for classical glycoside hydrolysis, the hydrolysis of vinyl ether groups from unsaturated saccharides occurs independently of the α or ß configuration of the cleaved linkage.


Assuntos
Proteínas de Bactérias/química , Flavobacteriaceae/enzimologia , Glicosídeo Hidrolases/química , Polissacarídeos/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Flavobacteriaceae/genética , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Hidrólise , Cinética , Polissacarídeos/genética , Polissacarídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
7.
J Biol Chem ; 289(8): 5261-73, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24394409

RESUMO

α-L-arabinofuranosidases are glycoside hydrolases that specifically hydrolyze non-reducing residues from arabinose-containing polysaccharides. In the case of arabinoxylans, which are the main components of hemicellulose, they are part of microbial xylanolytic systems and are necessary for complete breakdown of arabinoxylans. Glycoside hydrolase family 62 (GH62) is currently a small family of α-L-arabinofuranosidases that contains only bacterial and fungal members. Little is known about the GH62 mechanism of action, because only a few members have been biochemically characterized and no three-dimensional structure is available. Here, we present the first crystal structures of two fungal GH62 α-L-arabinofuranosidases from the basidiomycete Ustilago maydis (UmAbf62A) and ascomycete Podospora anserina (PaAbf62A). Both enzymes are able to efficiently remove the α-L-arabinosyl substituents from arabinoxylan. The overall three-dimensional structure of UmAbf62A and PaAbf62A reveals a five-bladed ß-propeller fold that confirms their predicted classification into clan GH-F together with GH43 α-L-arabinofuranosidases. Crystallographic structures of the complexes with arabinose and cellotriose reveal the important role of subsites +1 and +2 for sugar binding. Intriguingly, we observed that PaAbf62A was inhibited by cello-oligosaccharides and displayed binding affinity to cellulose although no activity was observed on a range of cellulosic substrates. Bioinformatic analyses showed that UmAbf62A and PaAbf62A belong to two distinct subfamilies within the GH62 family. The results presented here provide a framework to better investigate the structure-function relationships within the GH62 family.


Assuntos
Proteínas Fúngicas/química , Glicosídeo Hidrolases/química , Família Multigênica , Podospora/enzimologia , Ustilago/enzimologia , Arabinose/metabolismo , Calorimetria , Domínio Catalítico , Celulose/metabolismo , Cristalografia por Raios X , Proteínas Fúngicas/metabolismo , Glicosídeo Hidrolases/metabolismo , Cinética , Modelos Moleculares , Filogenia
8.
Proc Natl Acad Sci U S A ; 109(51): 20889-94, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23213210

RESUMO

Noncatalytic carbohydrate binding modules (CBMs) are components of glycoside hydrolases that attack generally inaccessible substrates. CBMs mediate a two- to fivefold elevation in the activity of endo-acting enzymes, likely through increasing the concentration of the appended enzymes in the vicinity of the substrate. The function of CBMs appended to exo-acting glycoside hydrolases is unclear because their typical endo-binding mode would not fulfill a targeting role. Here we show that the Bacillus subtilis exo-acting ß-fructosidase SacC, which specifically hydrolyses levan, contains the founding member of CBM family 66 (CBM66). The SacC-derived CBM66 (BsCBM66) targets the terminal fructosides of the major fructans found in nature. The crystal structure of BsCBM66 in complex with ligands reveals extensive interactions with the terminal fructose moiety (Fru-3) of levantriose but only limited hydrophobic contacts with Fru-2, explaining why the CBM displays broad specificity. Removal of BsCBM66 from SacC results in a ~100-fold reduction in activity against levan. The truncated enzyme functions as a nonspecific ß-fructosidase displaying similar activity against ß-2,1- and ß-2,6-linked fructans and their respective fructooligosaccharides. Conversely, appending BsCBM66 to BT3082, a nonspecific ß-fructosidase from Bacteroides thetaiotaomicron, confers exolevanase activity on the enzyme. We propose that BsCBM66 confers specificity for levan, a branched fructan, through an "avidity" mechanism in which the CBM and the catalytic module target the termini of different branches of the same polysaccharide molecule. This report identifies a unique mechanism by which CBMs modulate enzyme function, and shows how specificity can be tailored by integrating nonspecific catalytic and binding modules into a single enzyme.


Assuntos
Bacillus subtilis/metabolismo , Carboidratos/química , Enzimas/química , Bacteroides/metabolismo , Biocombustíveis , Calorimetria/métodos , Catálise , Cristalografia por Raios X/métodos , Frutanos/química , Glicosídeo Hidrolases/química , Interações Hidrofóbicas e Hidrofílicas , Cinética , Lectinas/química , Ligantes , Modelos Químicos , Oligossacarídeos/química , Polissacarídeos/química , Ligação Proteica , Estrutura Terciária de Proteína
9.
Proc Natl Acad Sci U S A ; 109(14): 5458-63, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22434909

RESUMO

Efficient lignin depolymerization is unique to the wood decay basidiomycetes, collectively referred to as white rot fungi. Phanerochaete chrysosporium simultaneously degrades lignin and cellulose, whereas the closely related species, Ceriporiopsis subvermispora, also depolymerizes lignin but may do so with relatively little cellulose degradation. To investigate the basis for selective ligninolysis, we conducted comparative genome analysis of C. subvermispora and P. chrysosporium. Genes encoding manganese peroxidase numbered 13 and five in C. subvermispora and P. chrysosporium, respectively. In addition, the C. subvermispora genome contains at least seven genes predicted to encode laccases, whereas the P. chrysosporium genome contains none. We also observed expansion of the number of C. subvermispora desaturase-encoding genes putatively involved in lipid metabolism. Microarray-based transcriptome analysis showed substantial up-regulation of several desaturase and MnP genes in wood-containing medium. MS identified MnP proteins in C. subvermispora culture filtrates, but none in P. chrysosporium cultures. These results support the importance of MnP and a lignin degradation mechanism whereby cleavage of the dominant nonphenolic structures is mediated by lipid peroxidation products. Two C. subvermispora genes were predicted to encode peroxidases structurally similar to P. chrysosporium lignin peroxidase and, following heterologous expression in Escherichia coli, the enzymes were shown to oxidize high redox potential substrates, but not Mn(2+). Apart from oxidative lignin degradation, we also examined cellulolytic and hemicellulolytic systems in both fungi. In summary, the C. subvermispora genetic inventory and expression patterns exhibit increased oxidoreductase potential and diminished cellulolytic capability relative to P. chrysosporium.


Assuntos
Basidiomycota/genética , Genômica , Lignina/metabolismo , Basidiomycota/classificação , Hidrólise , Dados de Sequência Molecular , Oxirredução , Filogenia , Especificidade da Espécie
10.
Proc Natl Acad Sci U S A ; 109(43): 17501-6, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-23045686

RESUMO

Agaricus bisporus is the model fungus for the adaptation, persistence, and growth in the humic-rich leaf-litter environment. Aside from its ecological role, A. bisporus has been an important component of the human diet for over 200 y and worldwide cultivation of the "button mushroom" forms a multibillion dollar industry. We present two A. bisporus genomes, their gene repertoires and transcript profiles on compost and during mushroom formation. The genomes encode a full repertoire of polysaccharide-degrading enzymes similar to that of wood-decayers. Comparative transcriptomics of mycelium grown on defined medium, casing-soil, and compost revealed genes encoding enzymes involved in xylan, cellulose, pectin, and protein degradation are more highly expressed in compost. The striking expansion of heme-thiolate peroxidases and ß-etherases is distinctive from Agaricomycotina wood-decayers and suggests a broad attack on decaying lignin and related metabolites found in humic acid-rich environment. Similarly, up-regulation of these genes together with a lignolytic manganese peroxidase, multiple copper radical oxidases, and cytochrome P450s is consistent with challenges posed by complex humic-rich substrates. The gene repertoire and expression of hydrolytic enzymes in A. bisporus is substantially different from the taxonomically related ectomycorrhizal symbiont Laccaria bicolor. A common promoter motif was also identified in genes very highly expressed in humic-rich substrates. These observations reveal genetic and enzymatic mechanisms governing adaptation to the humic-rich ecological niche formed during plant degradation, further defining the critical role such fungi contribute to soil structure and carbon sequestration in terrestrial ecosystems. Genome sequence will expedite mushroom breeding for improved agronomic characteristics.


Assuntos
Adaptação Fisiológica/genética , Agaricus/genética , Ecologia , Genoma Fúngico , Agaricus/metabolismo , Agaricus/fisiologia , Evolução Molecular , Lignina/metabolismo
11.
BMC Genomics ; 15: 486, 2014 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-24942338

RESUMO

BACKGROUND: Saprophytic filamentous fungi are ubiquitous micro-organisms that play an essential role in photosynthetic carbon recycling. The wood-decayer Pycnoporus cinnabarinus is a model fungus for the study of plant cell wall decomposition and is used for a number of applications in green and white biotechnology. RESULTS: The 33.6 megabase genome of P. cinnabarinus was sequenced and assembled, and the 10,442 predicted genes were functionally annotated using a phylogenomic procedure. In-depth analyses were carried out for the numerous enzyme families involved in lignocellulosic biomass breakdown, for protein secretion and glycosylation pathways, and for mating type. The P. cinnabarinus genome sequence revealed a consistent repertoire of genes shared with wood-decaying basidiomycetes. P. cinnabarinus is thus fully equipped with the classical families involved in cellulose and hemicellulose degradation, whereas its pectinolytic repertoire appears relatively limited. In addition, P. cinnabarinus possesses a complete versatile enzymatic arsenal for lignin breakdown. We identified several genes encoding members of the three ligninolytic peroxidase types, namely lignin peroxidase, manganese peroxidase and versatile peroxidase. Comparative genome analyses were performed in fungi displaying different nutritional strategies (white-rot and brown-rot modes of decay). P. cinnabarinus presents a typical distribution of all the specific families found in the white-rot life style. Growth profiling of P. cinnabarinus was performed on 35 carbon sources including simple and complex substrates to study substrate utilization and preferences. P. cinnabarinus grew faster on crude plant substrates than on pure, mono- or polysaccharide substrates. Finally, proteomic analyses were conducted from liquid and solid-state fermentation to analyze the composition of the secretomes corresponding to growth on different substrates. The distribution of lignocellulolytic enzymes in the secretomes was strongly dependent on growth conditions, especially for lytic polysaccharide mono-oxygenases. CONCLUSIONS: With its available genome sequence, P. cinnabarinus is now an outstanding model system for the study of the enzyme machinery involved in the degradation or transformation of lignocellulosic biomass.


Assuntos
Lignina/metabolismo , Pycnoporus/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Loci Gênicos , Genoma Fúngico , Glicosilação , Anotação de Sequência Molecular , Peroxidases/genética , Processamento de Proteína Pós-Traducional , Proteoma/genética , Proteoma/metabolismo , Pycnoporus/enzimologia , Análise de Sequência de DNA , Madeira/microbiologia
12.
Environ Microbiol ; 16(2): 525-44, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23841906

RESUMO

Magnetotactic bacteria (MTB) are capable of synthesizing intracellular organelles, the magnetosomes, that are membrane-bounded magnetite or greigite crystals arranged in chains. Although MTB are widely spread in various ecosystems, few axenic cultures are available, and only freshwater Magnetospirillum spp. have been genetically analysed. Here, we present the complete genome sequence of a marine magnetotactic spirillum, Magnetospira sp. QH-2. The high number of repeats and transposable elements account for the differences in QH-2 genome structure compared with other relatives. Gene cluster synteny and gene correlation analyses indicate that the insertion of the magnetosome island in the QH-2 genome occurred after divergence between freshwater and marine magnetospirilla. The presence of a sodium-quinone reductase, sodium transporters and other functional genes are evidence of the adaptive evolution of Magnetospira sp. QH-2 to the marine ecosystem. Genes well conserved among freshwater magnetospirilla for nitrogen fixation and assimilatory nitrate respiration are absent from the QH-2 genome. Unlike freshwater Magnetospirillum spp., marine Magnetospira sp. QH-2 neither has TonB and TonB-dependent receptors nor does it grow on trace amounts of iron. Taken together, our results show a distinct, adaptive evolution of Magnetospira sp. QH-2 to marine sediments in comparison with its closely related freshwater counterparts.


Assuntos
Evolução Biológica , Ecossistema , Genoma Bacteriano , Magnetospirillum/genética , Adaptação Biológica/genética , Proteínas de Bactérias/genética , Hibridização Genômica Comparativa , Elementos de DNA Transponíveis , DNA Bacteriano/genética , Ilhas Genômicas , Magnetossomos/genética , Magnetospirillum/fisiologia , Família Multigênica , Filogenia , Quinona Redutases/genética , Água do Mar/microbiologia , Simportadores/genética , Sintenia
13.
Fungal Genet Biol ; 72: 192-200, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25192612

RESUMO

Carbohydrate-Active enZymes (CAZymes) form particularly interesting targets to study in plant pathogens. Despite the fact that many CAZymes are pathogenicity factors, oomycete CAZymes have received significantly less attention than effectors in the literature. Here we present an analysis of the CAZymes present in the Phytophthora infestans, Ph. ramorum, Ph. sojae and Pythium ultimum genomes compared to growth of these species on a range of different carbon sources. Growth on these carbon sources indicates that the size of enzyme families involved in degradation of cell-wall related substrates like cellulose, xylan and pectin is not always a good predictor of growth on these substrates. While a capacity to degrade xylan and cellulose exists the products are not fully saccharified and used as a carbon source. The Phytophthora genomes encode larger CAZyme sets when compared to Py. ultimum, and encode putative cutinases, GH12 xyloglucanases and GH10 xylanases that are missing in the Py. ultimum genome. Phytophthora spp. also encode a larger number of enzyme families and genes involved in pectin degradation. No loss or gain of complete enzyme families was found between the Phytophthora genomes, but there are some marked differences in the size of some enzyme families.


Assuntos
Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Phytophthora/enzimologia , Pythium/enzimologia , Carbono/metabolismo , Biologia Computacional , Meios de Cultura/química , Genoma Fúngico , Phytophthora/genética , Phytophthora/crescimento & desenvolvimento , Pythium/genética , Pythium/crescimento & desenvolvimento
14.
Appl Microbiol Biotechnol ; 98(17): 7457-69, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24695830

RESUMO

The genome of the coprophilous fungus Podospora anserina harbors a large and highly diverse set of putative lignocellulose-acting enzymes. In this study, we investigated the enzymatic diversity of a broad range of P. anserina secretomes induced by various carbon sources (dextrin, glucose, xylose, arabinose, lactose, cellobiose, saccharose, Avicel, Solka-floc, birchwood xylan, wheat straw, maize bran, and sugar beet pulp (SBP)). Compared with the Trichoderma reesei enzymatic cocktail, P. anserina secretomes displayed similar cellulase, xylanase, and pectinase activities and greater arabinofuranosidase, arabinanase, and galactanase activities. The secretomes were further tested for their capacity to supplement a T. reesei cocktail. Four of them improved significantly the saccharification yield of steam-exploded wheat straw up to 48 %. Fine analysis of the P. anserina secretomes produced with Avicel and SBP using proteomics revealed a large array of CAZymes with a high number of GH6 and GH7 cellulases, CE1 esterases, GH43 arabinofuranosidases, and AA1 laccase-like multicopper oxidases. Moreover, a preponderance of AA9 (formerly GH61) was exclusively produced in the SBP condition. This study brings additional insights into the P. anserina enzymatic machinery and will facilitate the selection of promising targets for the development of future biorefineries.


Assuntos
Hidrolases/metabolismo , Lignina/metabolismo , Podospora/enzimologia , Caules de Planta/metabolismo , Podospora/química , Proteoma/análise , Triticum/metabolismo
15.
PLoS Genet ; 7(6): e1002070, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21695235

RESUMO

The plant-pathogenic fungus Mycosphaerella graminicola (asexual stage: Septoria tritici) causes septoria tritici blotch, a disease that greatly reduces the yield and quality of wheat. This disease is economically important in most wheat-growing areas worldwide and threatens global food production. Control of the disease has been hampered by a limited understanding of the genetic and biochemical bases of pathogenicity, including mechanisms of infection and of resistance in the host. Unlike most other plant pathogens, M. graminicola has a long latent period during which it evades host defenses. Although this type of stealth pathogenicity occurs commonly in Mycosphaerella and other Dothideomycetes, the largest class of plant-pathogenic fungi, its genetic basis is not known. To address this problem, the genome of M. graminicola was sequenced completely. The finished genome contains 21 chromosomes, eight of which could be lost with no visible effect on the fungus and thus are dispensable. This eight-chromosome dispensome is dynamic in field and progeny isolates, is different from the core genome in gene and repeat content, and appears to have originated by ancient horizontal transfer from an unknown donor. Synteny plots of the M. graminicola chromosomes versus those of the only other sequenced Dothideomycete, Stagonospora nodorum, revealed conservation of gene content but not order or orientation, suggesting a high rate of intra-chromosomal rearrangement in one or both species. This observed "mesosynteny" is very different from synteny seen between other organisms. A surprising feature of the M. graminicola genome compared to other sequenced plant pathogens was that it contained very few genes for enzymes that break down plant cell walls, which was more similar to endophytes than to pathogens. The stealth pathogenesis of M. graminicola probably involves degradation of proteins rather than carbohydrates to evade host defenses during the biotrophic stage of infection and may have evolved from endophytic ancestors.


Assuntos
Ascomicetos/genética , Cromossomos Fúngicos/genética , Genoma Fúngico/genética , Ascomicetos/metabolismo , Ascomicetos/patogenicidade , Rearranjo Gênico , Doenças das Plantas/microbiologia , Sintenia , Triticum/microbiologia
16.
PLoS Genet ; 7(8): e1002230, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21876677

RESUMO

Sclerotinia sclerotiorum and Botrytis cinerea are closely related necrotrophic plant pathogenic fungi notable for their wide host ranges and environmental persistence. These attributes have made these species models for understanding the complexity of necrotrophic, broad host-range pathogenicity. Despite their similarities, the two species differ in mating behaviour and the ability to produce asexual spores. We have sequenced the genomes of one strain of S. sclerotiorum and two strains of B. cinerea. The comparative analysis of these genomes relative to one another and to other sequenced fungal genomes is provided here. Their 38-39 Mb genomes include 11,860-14,270 predicted genes, which share 83% amino acid identity on average between the two species. We have mapped the S. sclerotiorum assembly to 16 chromosomes and found large-scale co-linearity with the B. cinerea genomes. Seven percent of the S. sclerotiorum genome comprises transposable elements compared to <1% of B. cinerea. The arsenal of genes associated with necrotrophic processes is similar between the species, including genes involved in plant cell wall degradation and oxalic acid production. Analysis of secondary metabolism gene clusters revealed an expansion in number and diversity of B. cinerea-specific secondary metabolites relative to S. sclerotiorum. The potential diversity in secondary metabolism might be involved in adaptation to specific ecological niches. Comparative genome analysis revealed the basis of differing sexual mating compatibility systems between S. sclerotiorum and B. cinerea. The organization of the mating-type loci differs, and their structures provide evidence for the evolution of heterothallism from homothallism. These data shed light on the evolutionary and mechanistic bases of the genetically complex traits of necrotrophic pathogenicity and sexual mating. This resource should facilitate the functional studies designed to better understand what makes these fungi such successful and persistent pathogens of agronomic crops.


Assuntos
Ascomicetos/genética , Botrytis/genética , Genoma Fúngico , Doenças das Plantas/microbiologia , Elementos de DNA Transponíveis , Genes Fúngicos , Genômica , Filogenia , Doenças das Plantas/genética , Sintenia
17.
Proc Natl Acad Sci U S A ; 108(22): 9166-71, 2011 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-21536894

RESUMO

Rust fungi are some of the most devastating pathogens of crop plants. They are obligate biotrophs, which extract nutrients only from living plant tissues and cannot grow apart from their hosts. Their lifestyle has slowed the dissection of molecular mechanisms underlying host invasion and avoidance or suppression of plant innate immunity. We sequenced the 101-Mb genome of Melampsora larici-populina, the causal agent of poplar leaf rust, and the 89-Mb genome of Puccinia graminis f. sp. tritici, the causal agent of wheat and barley stem rust. We then compared the 16,399 predicted proteins of M. larici-populina with the 17,773 predicted proteins of P. graminis f. sp tritici. Genomic features related to their obligate biotrophic lifestyle include expanded lineage-specific gene families, a large repertoire of effector-like small secreted proteins, impaired nitrogen and sulfur assimilation pathways, and expanded families of amino acid and oligopeptide membrane transporters. The dramatic up-regulation of transcripts coding for small secreted proteins, secreted hydrolytic enzymes, and transporters in planta suggests that they play a role in host infection and nutrient acquisition. Some of these genomic hallmarks are mirrored in the genomes of other microbial eukaryotes that have independently evolved to infect plants, indicating convergent adaptation to a biotrophic existence inside plant cells.


Assuntos
Basidiomycota/genética , Fungos/genética , Triticum/microbiologia , Perfilação da Expressão Gênica , Genes Fúngicos , Genoma , Genoma Fúngico , Modelos Genéticos , Nitratos/química , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Análise de Sequência de DNA , Sulfatos/química
18.
BMC Genomics ; 14: 663, 2013 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-24074284

RESUMO

BACKGROUND: Agaricus bisporus is commercially grown on compost, in which the available carbon sources consist mainly of plant-derived polysaccharides that are built out of various different constituent monosaccharides. The major constituent monosaccharides of these polysaccharides are glucose, xylose, and arabinose, while smaller amounts of galactose, glucuronic acid, rhamnose and mannose are also present. RESULTS: In this study, genes encoding putative enzymes from carbon metabolism were identified and their expression was studied in different growth stages of A. bisporus. We correlated the expression of genes encoding plant and fungal polysaccharide modifying enzymes identified in the A. bisporus genome to the soluble carbohydrates and the composition of mycelium grown compost, casing layer and fruiting bodies. CONCLUSIONS: The compost grown vegetative mycelium of A. bisporus consumes a wide variety of monosaccharides. However, in fruiting bodies only hexose catabolism occurs, and no accumulation of other sugars was observed. This suggests that only hexoses or their conversion products are transported from the vegetative mycelium to the fruiting body, while the other sugars likely provide energy for growth and maintenance of the vegetative mycelium. Clear correlations were found between expression of the genes and composition of carbohydrates. Genes encoding plant cell wall polysaccharide degrading enzymes were mainly expressed in compost-grown mycelium, and largely absent in fruiting bodies. In contrast, genes encoding fungal cell wall polysaccharide modifying enzymes were expressed in both fruiting bodies and vegetative mycelium, but different gene sets were expressed in these samples.


Assuntos
Agaricus/metabolismo , Metabolismo dos Carboidratos/genética , Agaricus/enzimologia , Agaricus/genética , Carbono/metabolismo , Parede Celular/metabolismo , Cromatografia por Troca Iônica , Regulação Fúngica da Expressão Gênica , Genes Fúngicos/genética , Redes e Vias Metabólicas/genética , Micélio/crescimento & desenvolvimento , Células Vegetais/metabolismo , Polissacarídeos/metabolismo
19.
Genome Res ; 20(11): 1605-12, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20841432

RESUMO

The human gut microbiome is a complex ecosystem composed mainly of uncultured bacteria. It plays an essential role in the catabolism of dietary fibers, the part of plant material in our diet that is not metabolized in the upper digestive tract, because the human genome does not encode adequate carbohydrate active enzymes (CAZymes). We describe a multi-step functionally based approach to guide the in-depth pyrosequencing of specific regions of the human gut metagenome encoding the CAZymes involved in dietary fiber breakdown. High-throughput functional screens were first applied to a library covering 5.4 × 10(9) bp of metagenomic DNA, allowing the isolation of 310 clones showing beta-glucanase, hemicellulase, galactanase, amylase, or pectinase activities. Based on the results of refined secondary screens, sequencing efforts were reduced to 0.84 Mb of nonredundant metagenomic DNA, corresponding to 26 clones that were particularly efficient for the degradation of raw plant polysaccharides. Seventy-three CAZymes from 35 different families were discovered. This corresponds to a fivefold target-gene enrichment compared to random sequencing of the human gut metagenome. Thirty-three of these CAZy encoding genes are highly homologous to prevalent genes found in the gut microbiome of at least 20 individuals for whose metagenomic data are available. Moreover, 18 multigenic clusters encoding complementary enzyme activities for plant cell wall degradation were also identified. Gene taxonomic assignment is consistent with horizontal gene transfer events in dominant gut species and provides new insights into the human gut functional trophic chain.


Assuntos
Mineração de Dados/métodos , Fibras na Dieta/metabolismo , Enzimas/genética , Intestinos/microbiologia , Metagenoma/genética , Metagenômica/métodos , Adulto , Algoritmos , Proteínas de Bactérias/análise , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Análise por Conglomerados , Biologia Computacional/métodos , Enzimas/análise , Enzimas/isolamento & purificação , Enzimas/metabolismo , Humanos , Masculino , Metabolismo/genética , Metagenoma/fisiologia , Dados de Sequência Molecular , Análise de Sequência de DNA
20.
Appl Environ Microbiol ; 79(2): 488-96, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23124232

RESUMO

The genome of the coprophilic ascomycete Podospora anserina encodes 33 different genes encoding copper-dependent lytic polysaccharide monooxygenases (LPMOs) from glycoside hydrolase family 61 (GH61). In this study, two of these enzymes (P. anserina GH61A [PaGH61A] and PaGH61B), which both harbored a family 1 carbohydrate binding module, were successfully produced in Pichia pastoris. Synergistic cooperation between PaGH61A or PaGH61B with the cellobiose dehydrogenase (CDH) of Pycnoporus cinnabarinus on cellulose resulted in the formation of oxidized and nonoxidized cello-oligosaccharides. A striking difference between PaGH61A and PaGH61B was observed through the identification of the products, among which were doubly and triply oxidized cellodextrins, which were released only by the combination of PaGH61B with CDH. The mass spectrometry fragmentation patterns of these oxidized products could be consistent with oxidation at the C-6 position with a geminal diol group. The different properties of PaGH61A and PaGH61B and their effect on the interaction with CDH are discussed in regard to the proposed in vivo function of the CDH/GH61 enzyme system in oxidative cellulose hydrolysis.


Assuntos
Oxigenases de Função Mista/metabolismo , Oligossacarídeos/metabolismo , Podospora/enzimologia , Desidrogenases de Carboidrato/metabolismo , Celulose/metabolismo , Clonagem Molecular , Expressão Gênica , Espectrometria de Massas , Oxirredução , Pichia/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA