Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1319: 221-254, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34424518

RESUMO

The subterranean-dwelling naked mole-rat (Heterocephalus glaber) is an extremophilic rodent, able to thrive in the harsh underground conditions of sub-Saharan Northeast Africa. This pelage-free mammal exhibits numerous unusual ecophysiological features including pronounced tolerance of thermolability, hypoxia, hypercapnia and noxious substances. As a mammal, the naked mole-rat provides a proof-of-concept that age-related changes in physiology are avoidable. At ages far beyond their expected lifespans given both their body size and/or the timing of early developmental milestones, naked mole-rats fail to exhibit meaningful changes in physiological health or demographic mortality. Lack of physiological deterioration with age is also evident in lean and fat mass, bone quality, and reproductive capacity. Rather, regardless of age, under basal conditions naked mole-rats appear to "idle on low" with their "shields up" as is manifested by low body temperature, metabolic rate, cardiac output and kidney concentrating ability, enabling better protection of organs and cellular function. When needed, they can nevertheless ramp up these functions, increasing cardiac output and metabolism 2-5 fold. Here we review many unusual aspects of their physiology and examine how these attributes facilitate both tolerance of the diverse suite of hostile conditions encountered in their natural milieu as well as contribute to their extraordinary longevity and resistance to common, age-related chronic diseases.


Assuntos
Longevidade , Ratos-Toupeira , Envelhecimento , Animais , Modelos Animais de Doenças , Capacidade de Concentração Renal
2.
Nat Commun ; 15(1): 3145, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605005

RESUMO

Naked mole-rats (NMRs) are best known for their extreme longevity and cancer resistance, suggesting that their immune system might have evolved to facilitate these phenotypes. Natural killer (NK) and T cells have evolved to detect and destroy cells infected with pathogens and to provide an early response to malignancies. While it is known that NMRs lack NK cells, likely lost during evolution, little is known about their T-cell subsets in terms of the evolution of the genes that regulate their function, their clonotypic diversity, and the thymus where they mature. Here we find, using single-cell transcriptomics, that NMRs have a large circulating population of γδT cells, which in mice and humans mostly reside in peripheral tissues and induce anti-cancer cytotoxicity. Using single-cell-T-cell-receptor sequencing, we find that a cytotoxic γδT-cell subset of NMRs harbors a dominant clonotype, and that their conventional CD8 αßT cells exhibit modest clonotypic diversity. Consistently, perinatal NMR thymuses are considerably smaller than those of mice yet follow similar involution progression. Our findings suggest that NMRs have evolved under a relaxed intracellular pathogenic selective pressure that may have allowed cancer resistance and longevity to become stronger targets of selection to which the immune system has responded by utilizing γδT cells.


Assuntos
Longevidade , Neoplasias , Humanos , Animais , Camundongos , Longevidade/fisiologia , Neoplasias/genética , Subpopulações de Linfócitos T , Células Matadoras Naturais , Ratos-Toupeira/fisiologia
3.
Exp Gerontol ; 134: 110893, 2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32119994

RESUMO

Ageing is a major risk factor for vision loss, and inflammation is an important contributor to retinal disease in the elderly. Regenerative medicine based on cell replacement strategies has emerged in recent years as a promising approach to restore vision. However, how the ageing process affects retinal homeostasis and inflammation in the retina and how this may impose a limitation to the success of such interventions remains unknown. Here we report that, in mice and humans, retinal ageing is associated with a reduction in MANF protein levels, specifically in the choroid, where increased densities of activated macrophages can be detected. We further show that the retina of old wild type mice, in the absence of any other genetic alteration, has limited homeostatic capacity after damage imposed by light exposure and reduced engraftment efficiency of exogenously supplied photoreceptors. Finally, we show that supplementation of MANF recombinant protein can improve retinal homeostasis and repair capacity in both settings, correlating with reduced numbers of activated macrophages in the old retina. Our work identifies age-related alterations in retinal homeostasis, independent of genetic alterations, leading to age-related retinal inflammation and damage susceptibility. We suggest that MANF therapy is a potential intervention to maintain retinal homeostasis in the elderly and improve the success of retinal regenerative therapies applied to aged individuals.

4.
Nat Metab ; 1(2): 276-290, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-31489403

RESUMO

Aging is accompanied by altered intercellular communication, deregulated metabolic function, and inflammation. Interventions that restore a youthful state delay or reverse these processes, prompting the search for systemic regulators of metabolic and immune homeostasis. Here we identify MANF, a secreted stress-response protein with immune modulatory properties, as an evolutionarily conserved regulator of systemic and in particular liver metabolic homeostasis. We show that MANF levels decline with age in flies, mice and humans, and MANF overexpression extends lifespan in flies. MANF deficient flies exhibit enhanced inflammation and shorter lifespans, and MANF heterozygous mice exhibit inflammatory phenotypes in various tissues, as well as progressive liver damage, fibrosis, and steatosis. We show that immune cell-derived MANF protects against liver inflammation and fibrosis, while hepatocyte-derived MANF prevents hepatosteatosis. Liver rejuvenation by heterochronic parabiosis in mice further depends on MANF, while MANF supplementation ameliorates several hallmarks of liver aging, prevents hepatosteatosis induced by diet, and improves age-related metabolic dysfunction. Our findings identify MANF as a systemic regulator of homeostasis in young animals, suggesting a therapeutic application for MANF in age-related metabolic diseases.


Assuntos
Homeostase , Sistema Imunitário/fisiologia , Fatores de Crescimento Neural/fisiologia , Animais , Drosophila/fisiologia , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA