RESUMO
The numbers of diagnostic and therapeutic nuclear medicine agents under investigation are rapidly increasing. Both novel emitters and novel carrier molecules require careful selection of measurement procedures. This document provides guidance relevant to dosimetry for first-in human and early phase clinical trials of such novel agents. The guideline includes a short introduction to different emitters and carrier molecules, followed by recommendations on the methods for activity measurement, pharmacokinetic analyses, as well as absorbed dose calculations and uncertainty analyses. The optimal use of preclinical information and studies involving diagnostic analogues is discussed. Good practice reporting is emphasised, and relevant dosimetry parameters and method descriptions to be included are listed. Three examples of first-in-human dosimetry studies, both for diagnostic tracers and radionuclide therapies, are given.
Assuntos
Medicina Nuclear , Compostos Radiofarmacêuticos , Humanos , Medicina Nuclear/métodos , Radiometria/métodos , Cintilografia , Compostos Radiofarmacêuticos/uso terapêutico , Guias de Prática Clínica como Assunto , Ensaios Clínicos como AssuntoRESUMO
OBJECTIVE: To test the ability of high-performance machine learning (ML) models employing clinical, radiological, and radiomic variables to improve non-invasive prediction of the pathological status of prostate cancer (PCa) in a large, single-institution cohort. METHODS: Patients who underwent multiparametric MRI and prostatectomy in our institution in 2015-2018 were considered; a total of 949 patients were included. Gradient-boosted decision tree models were separately trained using clinical features alone and in combination with radiological reporting and/or prostate radiomic features to predict pathological T, pathological N, ISUP score, and their change from preclinical assessment. Model behavior was analyzed in terms of performance, feature importance, Shapley additive explanation (SHAP) values, and mean absolute error (MAE). The best model was compared against a naïve model mimicking clinical workflow. RESULTS: The model including all variables was the best performing (AUC values ranging from 0.73 to 0.96 for the six endpoints). Radiomic features brought a small yet measurable boost in performance, with the SHAP values indicating that their contribution can be critical to successful prediction of endpoints for individual patients. MAEs were lower for low-risk patients, suggesting that the models find them easier to classify. The best model outperformed (p ≤ 0.0001) clinical baseline, resulting in significantly fewer false negative predictions and overall was less prone to under-staging. CONCLUSIONS: Our results highlight the potential benefit of integrative ML models for pathological status prediction in PCa. Additional studies regarding clinical integration of such models can provide valuable information for personalizing therapy offering a tool to improve non-invasive prediction of pathological status. CLINICAL RELEVANCE STATEMENT: The best machine learning model was less prone to under-staging of the disease. The improved accuracy of our pathological prediction models could constitute an asset to the clinical workflow by providing clinicians with accurate pathological predictions prior to treatment. KEY POINTS: ⢠Currently, the most common strategies for pre-surgical stratification of prostate cancer (PCa) patients have shown to have suboptimal performances. ⢠The addition of radiological features to the clinical features gave a considerable boost in model performance. Our best model outperforms the naïve model, avoiding under-staging and resulting in a critical advantage in the clinic. â¢Machine learning models incorporating clinical, radiological, and radiomics features significantly improved accuracy of pathological prediction in prostate cancer, possibly constituting an asset to the clinical workflow.
Assuntos
Aprendizado de Máquina , Imageamento por Ressonância Magnética Multiparamétrica , Prostatectomia , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Imageamento por Ressonância Magnética Multiparamétrica/métodos , Idoso , Pessoa de Meia-Idade , Prostatectomia/métodos , Estudos Retrospectivos , Próstata/diagnóstico por imagem , Próstata/patologia , Valor Preditivo dos Testes , Árvores de Decisões , RadiômicaRESUMO
PURPOSE: Radiomics is an emerging field that utilizes quantitative features extracted from medical images to predict clinically meaningful outcomes. Validating findings is crucial to assess radiomics applicability. We aimed to validate previously published magnetic resonance imaging (MRI) radiomics models to predict oncological outcomes in oral tongue squamous cell carcinoma (OTSCC). MATERIALS AND METHODS: Retrospective multicentric study on OTSCC surgically treated from 2010 to 2019. All patients performed preoperative MRI, including contrast-enhanced T1-weighted (CE-T1), diffusion-weighted sequences and apparent diffusion coefficient map. We evaluated overall survival (OS), locoregional recurrence-free survival (LRRFS), cause-specific mortality (CSM). We elaborated different models based on clinical and radiomic data. C-indexes assessed the prediction accuracy of the models. RESULTS: We collected 112 consecutive independent patients from three Italian Institutions to validate the previously published MRI radiomic models based on 79 different patients. The C-indexes for the hybrid clinical-radiomic models in the validation cohort were lower than those in the training cohort but remained > 0.5 in most cases. CE-T1 sequence provided the best fit to the models: the C-indexes obtained were 0.61, 0.59, 0.64 (pretreatment model) and 0.65, 0.69, 0.70 (posttreatment model) for OS, LRRFS and CSM, respectively. CONCLUSION: Our clinical-radiomic models retain a potential to predict OS, LRRFS and CSM in heterogeneous cohorts across different centers. These findings encourage further research, aimed at overcoming current limitations, due to the variability of imaging acquisition, processing and tumor volume delineation.
Assuntos
Imageamento por Ressonância Magnética , Neoplasias da Língua , Humanos , Neoplasias da Língua/diagnóstico por imagem , Neoplasias da Língua/patologia , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética/métodos , Idoso , Prognóstico , Adulto , Idoso de 80 Anos ou mais , Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/mortalidade , RadiômicaRESUMO
Dosimetry can be a useful tool for personalization of molecular radiotherapy (MRT) procedures, enabling the continuous development of theranostic concepts. However, the additional resource requirements are often seen as a barrier to implementation. This guide discusses the requirements for dosimetry and demonstrates how a dosimetry regimen can be tailored to the available facilities of a centre. The aim is to help centres wishing to initiate a dosimetry service but may not have the experience or resources of some of the more established therapy and dosimetry centres. The multidisciplinary approach and different personnel requirements are discussed and key equipment reviewed example protocols demonstrating these factors are given in the supplementary material for the main therapies carried out in nuclear medicine, including [131I]-NaI for benign thyroid disorders, [177Lu]-DOTATATE and 131I-mIBG for neuroendocrine tumours and [90Y]-microspheres for unresectable hepatic carcinoma.
Assuntos
Tumores Neuroendócrinos , Radiometria , Humanos , Radiometria/métodos , Radioisótopos do Iodo , Tumores Neuroendócrinos/diagnóstico por imagem , Tumores Neuroendócrinos/radioterapia , 3-IodobenzilguanidinaRESUMO
BACKGROUND: Currently, main treatment strategies for early-stage non-small cell lung cancer (ES-NSCLC) disease are surgery or stereotactic body radiation therapy (SBRT), with successful local control rates for both approaches. However, regional and distant failure remain critical in SBRT, and it is paramount to identify predictive factors of response to identify high-risk patients who may benefit from more aggressive approaches. The main endpoint of the MONDRIAN trial is to identify multi-omic biomarkers of SBRT response integrating information from the individual fields of radiomics, genomics and proteomics. METHODS: MONDRIAN is a prospective observational explorative cohort clinical study, with a data-driven, bottom-up approach. It is expected to enroll 100 ES-NSCLC SBRT candidates treated at an Italian tertiary cancer center with well-recognized expertise in SBRT and thoracic surgery. To identify predictors specific to SBRT, MONDRIAN will include data from 200 patients treated with surgery, in a 1:2 ratio, with comparable clinical characteristics. The project will have an overall expected duration of 60 months, and will be structured into five main tasks: (i) Clinical Study; (ii) Imaging/ Radiomic Study, (iii) Gene Expression Study, (iv) Proteomic Study, (v) Integrative Model Building. DISCUSSION: Thanks to its multi-disciplinary nature, MONDRIAN is expected to provide the opportunity to characterize ES-NSCLC from a multi-omic perspective, with a Radiation Oncology-oriented focus. Other than contributing to a mechanistic understanding of the disease, the study will assist the identification of high-risk patients in a largely unexplored clinical setting. Ultimately, this would orient further clinical research efforts on the combination of SBRT and systemic treatments, such as immunotherapy, with the perspective of improving oncological outcomes in this subset of patients. TRIAL REGISTRATION: The study was prospectively registered at clinicaltrials.gov (NCT05974475).
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Radiocirurgia , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patologia , Multiômica , Estadiamento de Neoplasias , Estudos Observacionais como Assunto , Proteômica , Radiocirurgia/métodosRESUMO
BACKGROUND: Contouring of anatomical regions is a crucial step in the medical workflow and is both time-consuming and prone to intra- and inter-observer variability. This study compares different strategies for automatic segmentation of the prostate in T2-weighted MRIs. METHODS: This study included 100 patients diagnosed with prostate adenocarcinoma who had undergone multi-parametric MRI and prostatectomy. From the T2-weighted MR images, ground truth segmentation masks were established by consensus from two expert radiologists. The prostate was then automatically contoured with six different methods: (1) a multi-atlas algorithm, (2) a proprietary algorithm in the Syngo.Via medical imaging software, and four deep learning models: (3) a V-net trained from scratch, (4) a pre-trained 2D U-net, (5) a GAN extension of the 2D U-net, and (6) a segmentation-adapted EfficientDet architecture. The resulting segmentations were compared and scored against the ground truth masks with one 70/30 and one 50/50 train/test data split. We also analyzed the association between segmentation performance and clinical variables. RESULTS: The best performing method was the adapted EfficientDet (model 6), achieving a mean Dice coefficient of 0.914, a mean absolute volume difference of 5.9%, a mean surface distance (MSD) of 1.93 pixels, and a mean 95th percentile Hausdorff distance of 3.77 pixels. The deep learning models were less prone to serious errors (0.854 minimum Dice and 4.02 maximum MSD), and no significant relationship was found between segmentation performance and clinical variables. CONCLUSIONS: Deep learning-based segmentation techniques can consistently achieve Dice coefficients of 0.9 or above with as few as 50 training patients, regardless of architectural archetype. The atlas-based and Syngo.via methods found in commercial clinical software performed significantly worse (0.855[Formula: see text]0.887 Dice).
Assuntos
Próstata , Neoplasias da Próstata , Masculino , Humanos , Próstata/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Neoplasias da Próstata/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodosRESUMO
The purpose of the EANM Dosimetry Committee is to provide recommendations and guidance to scientists and clinicians on patient-specific dosimetry. Radiopharmaceuticals labelled with lutetium-177 (177Lu) are increasingly used for therapeutic applications, in particular for the treatment of metastatic neuroendocrine tumours using ligands for somatostatin receptors and prostate adenocarcinoma with small-molecule PSMA-targeting ligands. This paper provides an overview of reported dosimetry data for these therapies and summarises current knowledge about radiation-induced side effects on normal tissues and dose-effect relationships for tumours. Dosimetry methods and data are summarised for kidneys, bone marrow, salivary glands, lacrimal glands, pituitary glands, tumours, and the skin in case of radiopharmaceutical extravasation. Where applicable, taking into account the present status of the field and recent evidence in the literature, guidance is provided. The purpose of these recommendations is to encourage the practice of patient-specific dosimetry in therapy with 177Lu-labelled compounds. The proposed methods should be within the scope of centres offering therapy with 177Lu-labelled ligands for somatostatin receptors or small-molecule PSMA.
Assuntos
Lesões por Radiação , Receptores de Somatostatina , Humanos , Ligantes , Lutécio/uso terapêutico , Masculino , Antígeno Prostático Específico , Radioisótopos , Compostos Radiofarmacêuticos/efeitos adversos , SomatostatinaRESUMO
BACKGROUND: Breast-conserving surgery (BCS) and whole breast radiation therapy (WBRT) are the standard of care for early-stage breast cancer (BC). Based on the observation that most local recurrences occurred near the tumor bed, accelerated partial breast irradiation (APBI), consisting of a higher dose per fraction to the tumor bed over a reduced treatment time, has been gaining ground as an attractive alternative in selected patients with low-risk BC. Although more widely delivered in postoperative setting, preoperative APBI has also been investigated in a limited, though increasing, and number of studies. The aim of this study is to test the feasibility, safety and efficacy of preoperative radiotherapy (RT) in a single fraction for selected BC patients. METHODS: This is a phase I/II, single-arm and open-label single-center clinical trial using CyberKnife. The clinical investigation is supported by a preplanning section which addresses technical and dosimetric issues. The primary endpoint for the phase I study, covering the 1st and 2nd year of the research project, is the identification of the maximum tolerated dose (MTD) which meets a specific target toxicity level (no grade 3-4 toxicity). The primary endpoint for the phase II study (3rd to 5th year) is the evaluation of treatment efficacy measured in terms of pathological complete response rate. DISCUSSION: The study will investigate the response of BC to the preoperative APBI from different perspectives. While preoperative APBI represents a form of anticipated boost, followed by WBRT, different are the implications for the scientific community. The study may help to identify good responders for whom surgery could be omitted. It is especially appealing for patients unfit for surgery due to advanced age or severe co-morbidities, in addition to or instead of systemic therapies, to ensure long-term local control. Moreover, patients with oligometastatic disease synchronous with primary BC may benefit from APBI on the intact tumor in terms of tumor progression free survival. The study of response to RT can provide useful information about BC radiobiology, immunologic reactions, genomic expression, and radiomics features, to be tested on a larger scale. TRIAL REGISTRATION: The study was prospectively registered at clinicaltrials.gov ( NCT04679454 ).
Assuntos
Neoplasias da Mama , Mama/patologia , Neoplasias da Mama/patologia , Neoplasias da Mama/radioterapia , Neoplasias da Mama/cirurgia , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Feminino , Humanos , Mastectomia Segmentar , Resultado do TratamentoRESUMO
PURPOSE: To investigate the repeatability and reproducibility of radiomic features extracted from MR images and provide a workflow to identify robust features. METHODS: T2 -weighted images of a pelvic phantom were acquired on three scanners of two manufacturers and two magnetic field strengths. The repeatability and reproducibility of features were assessed by the intraclass correlation coefficient and the concordance correlation coefficient, respectively, and by the within-subject coefficient of variation, considering repeated acquisitions with and without phantom repositioning, and with different scanner and acquisition parameters. The features showing intraclass correlation coefficient or concordance correlation coefficient >0.9 were selected, and their dependence on shape information (Spearman's ρ > 0.8) analyzed. They were classified for their ability to distinguish textures, after shuffling voxel intensities of images. RESULTS: From 944 two-dimensional features, 79.9% to 96.4% showed excellent repeatability in fixed position across all scanners. A much lower range (11.2% to 85.4%) was obtained after phantom repositioning. Three-dimensional extraction did not improve repeatability performance. Excellent reproducibility between scanners was observed in 4.6% to 15.6% of the features, at fixed imaging parameters. In addition, 82.4% to 94.9% of the features showed excellent agreement when extracted from images acquired with echo times 5 ms apart, but decreased with increasing echo-time intervals, and 90.7% of the features exhibited excellent reproducibility for changes in pulse repetition time. Of nonshape features, 2.0% was identified as providing only shape information. CONCLUSION: We showed that radiomic features are affected by MRI protocols and propose a general workflow to identify repeatable, reproducible, and informative radiomic features to ensure robustness of clinical studies.
Assuntos
Imageamento por Ressonância Magnética , Pelve , Frequência Cardíaca , Pelve/diagnóstico por imagem , Imagens de Fantasmas , Reprodutibilidade dos TestesRESUMO
OBJECTIVES: Radiomic involves testing the associations of a large number of quantitative imaging features with clinical characteristics. Our aim was to extract a radiomic signature from axial T2-weighted (T2-W) magnetic resonance imaging (MRI) of the whole prostate able to predict oncological and radiological scores in prostate cancer (PCa). METHODS: This study included 65 patients with localized PCa treated with radiotherapy (RT) between 2014 and 2018. For each patient, the T2-W MRI images were normalized with the histogram intensity scale standardization method. Features were extracted with the IBEX software. The association of each radiomic feature with risk class, T-stage, Gleason score (GS), extracapsular extension (ECE) score, and Prostate Imaging Reporting and Data System (PI-RADS v2) score was assessed by univariate and multivariate analysis. RESULTS: Forty-nine out of 65 patients were eligible. Among the 1702 features extracted, 3 to 6 features with the highest predictive power were selected for each outcome. This analysis showed that texture features were the most predictive for GS, PI-RADS v2 score, and risk class; intensity features were highly associated with T-stage, ECE score, and risk class, with areas under the receiver operating characteristic curve (ROC AUC) ranging from 0.74 to 0.94. CONCLUSIONS: MRI-based radiomics is a promising tool for prediction of PCa characteristics. Although a significant association was found between the selected features and all the mentioned clinical/radiological scores, further validations on larger cohorts are needed before these findings can be applied in the clinical practice. KEY POINTS: ⢠A radiomic model was used to classify PCa aggressiveness. ⢠Radiomic analysis was performed on T2-W magnetic resonance images of the whole prostate gland. ⢠The most predictive features belong to the texture (57%) and intensity (43%) domains.
Assuntos
Neoplasias da Próstata , Humanos , Imageamento por Ressonância Magnética , Masculino , Estudos Prospectivos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Estudos RetrospectivosRESUMO
Nuclear medicine therapeutic procedures have considerably expanded over the last few years, and their number is expected to grow exponentially in the future. Internal dosimetry has significantly developed as well, but has not yet been uniformly accepted as a valuable tool for prediction of therapeutic efficacy and toxicity. In this paper, we briefly summarize some of the arguments about the implementation of internal dosimetry in clinical practice. In addition, we provide a few examples of radionuclide anticancer therapies for which internal dosimetry demonstrated a significant impact on treatment optimization and patient outcome.
Assuntos
Medicina Nuclear , Humanos , Radiometria , CintilografiaRESUMO
PURPOSE: Peptide receptor radionuclide therapy (PRRT) with 90Y-labelled and 177Lu-labelled peptides is an effective strategy for the treatment of metastatic/nonresectable neuroendocrine tumours (NETs). Dosimetry provides important information useful for optimizing PRRT with individualized regimens to reduce toxicity and increase tumour responses. However, this strategy is not applied in routine clinical practice, despite the fact that several dosimetric studies have demonstrated significant dose-effect correlations for normal organ toxicity and tumour response that can better guide therapy planning. The present study reviews the key relationships and the radiobiological models available in the literature with the aim of providing evidence that optimization of PRRT is feasible through the implementation of dosimetry. METHODS: The MEDLINE database was searched combining specific keywords. Original studies published in the English language reporting dose-effect outcomes in patients treated with PRRT were chosen. RESULTS: Nine of 126 studies were selected from PubMed, and a further five were added manually, reporting on 590 patients. The studies were analysed and are discussed in terms of weak and strong elements of correlations. CONCLUSION: Several studies provided evidence of clinical benefit from the implementation of dosimetry in PRRT, indicating the potential contribution of this approach to reducing severe toxicity and/or reducing undertreatment that commonly occurs. Prospective trials, possibly multicentre, with larger numbers of patients undergoing quantitative dosimetry and with standardized methodologies should be carried out to definitively provide robust predictive paradigms to establish effective tailored PRRT.
Assuntos
Lutécio/efeitos adversos , Lutécio/uso terapêutico , Medicina de Precisão/métodos , Radioisótopos/efeitos adversos , Radioisótopos/uso terapêutico , Planejamento da Radioterapia Assistida por Computador/métodos , Receptores de Peptídeos/metabolismo , Radioisótopos de Ítrio/efeitos adversos , Radioisótopos de Ítrio/uso terapêutico , Humanos , Dosagem RadioterapêuticaRESUMO
BACKGROUND: Non-Small Cell Lung Cancer (NSCLC) is characterized by aggressiveness and includes the majority of thorax malignancies. The possibility of early stratification of patients as responsive and non-responsive to radiotherapy with a non-invasive method is extremely appealing. The distribution of the Fluorodeoxyglucose (18F-FDG) in tumours, provided by Positron-Emission-Tomography (PET) images, has been proved to be useful to assess the initial staging of the disease, recurrence, and response to chemotherapy and chemo-radiotherapy (CRT). OBJECTIVES: In the last years, particular efforts have been focused on the possibility of using ad interim 18F-FDG PET (FDGint) to evaluate response already in the course of radiotherapy. However, controversial findings have been reported for various malignancies, although several results would support the use of FDGint for individual therapeutic decisions, at least in some pathologies. The objective of the present review is to assemble comprehensively the literature concerning NSCLC, to evaluate where and whether FDGint may offer predictive potential. METHODS: Several searches were completed on Medline and the Embase database, combining different keywords. Original papers published in the English language from 2005 to 2016 with studies involving FDGint in patients affected by NSCLC and treated with radiation therapy or chemo-radiotherapy only were chosen. RESULTS: Twenty-one studies out of 970 in Pubmed and 1256 in Embase were selected, reporting on 627 patients. CONCLUSION: Certainly, the lack of univocal PET parameters was identified as a major drawback, while standardization would be required for best practice. In any case, all these papers denoted FDGint as promising and a challenging examination for early assessment of outcomes during CRT, sustaining its predictivity in lung cancer.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Carcinoma Pulmonar de Células não Pequenas/terapia , Quimiorradioterapia , Fluordesoxiglucose F18 , Humanos , Neoplasias Pulmonares/terapia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/normas , Compostos RadiofarmacêuticosRESUMO
BACKGROUND: The purpose of this work is to implement a radiobiological model to compare different treatment schedules for Peptide Receptor Radionuclide Therapy (PRRT) with 177Lu and 90Y. The principal radiobiological quantities were studied as a function of radionuclides, fractionation schemes, activity distribution in kidneys and tumor radiosensitivity. METHODS: Clinical data were used to derive representative absorbed doses for several treatment schemes for 177Lu-PRRT and for 90Y-PRRT and considered as input data for the radiobiological model. Both uniform and non-uniform activity distributions were considered for kidneys and cortex; for tumors a possible uptake reduction after each cycle and inter-patient radiosensitivity variability were investigated. Normal-Tissue-Complication-Probability (NTCP) and Tumor-Control-Probability (TCP) were evaluated. RESULTS: Hyper-cycling has a limited advantage in terms of BED reduction on kidneys for 177Lu, while for 90Y the effect is sizable and helps in reducing the NTCP. For all 177Lu-schemes the renal toxicity risk is negligible while for some 90Y-schemes the NTCP is not null. In case of tumor uptake reduction with cycles the treatment efficacy is reduced with a BED loss up to 46%. The TCP decreases when assuming normally-distributed tumor radiosensitivity values. CONCLUSIONS: This paper discusses how the combination of dosimetry and radiobiological modeling may help in exploring the link between the treatment schedule and the potential clinical outcome. The results highlight the capability of model to reproduce the available clinical data and provide useful qualitative information. Further investigation on dose distribution and dose uptake reduction with accurate clinical data is needed to progress in this field.
Assuntos
Lutécio/uso terapêutico , Modelos Biológicos , Radioisótopos/uso terapêutico , Radioterapia/métodos , Receptores de Peptídeos/metabolismo , Radioisótopos de Ítrio/uso terapêutico , Adulto , Algoritmos , Feminino , Humanos , Rim/efeitos da radiação , Masculino , Pessoa de Meia-Idade , Tumores Neuroendócrinos/metabolismo , Tumores Neuroendócrinos/radioterapia , Órgãos em Risco , RadiometriaRESUMO
PURPOSE: Peptide receptor radionuclide therapy (PRRT) with (90)Y and (177)Lu provides objective responses in neuroendocrine tumours, and is well tolerated with moderate toxicity. We aimed to identify clinical parameters predictive of long-term renal and haematological toxicity (myelodysplastic syndrome and acute leukaemia). METHODS: Of 807 patients studied at IEO-Milan (1997-2013), 793 (98 %) received (177)Lu (278, 34.4 %), (90)Y (358, 44.4 %) or (177)Lu and (90)Y combined (157. 19.5 %), and 14 (2 %) received combinations of PRRT and other agents. Follow-up was 30 months (1-180 months). The parameters evaluated included renal risk factors, bone marrow toxicity and PRRT features. Data analysis included multiple regression, random forest feature selection, and recursive partitioning and regression trees. RESULTS: Treatment with (90)Y and (90)Y + (177)Lu was more likely to result in nephrotoxicity than treatment with (177)Lu alone (33.6 %, 25.5 % and 13.4 % of patients, respectively; p < 0.0001). Nephrotoxicity (any grade), transient and persistent, occurred in 279 patients (34.6 %) and was severe (grade 3 + 4) in 12 (1.5 %). In only 20-27 % of any nephrotoxicity was the disease modelled by risk factors and codependent associations (p < 0.0001). Hypertension and haemoglobin toxicity were the most relevant factors. Persistent toxicity occurred in 197 patients (24.3 %). In only 22-34 % of affected patients was the disease modelled by the clinical data (p < 0.0001). Hypertension (regression coefficient 0.14, p < 0.0001) and haemoglobin toxicity (regression coefficient 0.21, p < 0.0001) were pertinent factors. Persistent toxicity was associated with shorter PRRT duration from the first to the last cycle (mean 387 vs. 658 days, p < 0.004). Myelodysplastic syndrome occurred in 2.35 % of patients (modelled by the clinical data in 30 %, p < 0.0001). Platelet toxicity grade (2.05 ± 1.2 vs. 0.58 ± 0.8, p < 0.0001) and longer PRRT duration (22.6 ± 24 vs. 15.5 ± 9 months, p = 0.01) were relevant. Acute leukaemia occurred in 1.1 % of patients (modelled by the clinical data in 18 %, p < 0.0001). CONCLUSION: Identified risk factors provide a limited (<30 %) risk estimate even with target tissue dosimetry. These data strongly suggest the existence of unidentified individual susceptibilities to radiation-associated disease.
Assuntos
Lutécio/efeitos adversos , Tumores Neuroendócrinos/radioterapia , Octreotida/efeitos adversos , Compostos Radiofarmacêuticos/efeitos adversos , Radioisótopos de Ítrio/efeitos adversos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Feminino , Humanos , Leucemia Mieloide Aguda/etiologia , Lutécio/administração & dosagem , Lutécio/uso terapêutico , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/etiologia , Tumores Neuroendócrinos/diagnóstico , Octreotida/administração & dosagem , Octreotida/uso terapêutico , Doses de Radiação , Compostos Radiofarmacêuticos/administração & dosagem , Compostos Radiofarmacêuticos/uso terapêutico , Receptores de Peptídeos/metabolismo , Radioisótopos de Ítrio/administração & dosagem , Radioisótopos de Ítrio/uso terapêuticoRESUMO
Absorbed radiation doses are essential in assessing the effects, e.g. safety and efficacy, of radiopharmaceutical therapy (RPT). Patient-specific absorbed dose calculations in the target or the organ at risk require multiple inputs. These include the number of disintegrations in the organ, i.e. the time-integrated activities (TIAs) of the organs, as well as other parameters describing the process of radiation energy deposition in the target tissue (i.e. mean energy per disintegration, radiation dose constants, etc). TIAs are then estimated by incorporating the area under the radiopharmaceutical's time-activity curve (TAC), which can be obtained by quantitative measurements of the biokinetics in the patient (typically based on imaging data such as planar scintigraphy, SPECT/CT, PET/CT, or blood and urine samples). The process of TAC determination/calculation for RPT generally depends on the user, e.g., the chosen number and schedule of measured time points, the selection of the fit function, the error model for the data and the fit algorithm. These decisions can strongly affect the final TIA values and thus the accuracy of calculated absorbed doses. Despite the high clinical importance of the TIA values, there is currently no consensus on processing time-activity data or even a clear understanding of the influence of uncertainties and variations in personalised RPT dosimetry related to user-dependent TAC calculation. As a first step towards minimising site-dependent variability in RPT dosimetry, this work provides an overview of quality assurance and uncertainty management considerations of the TIA estimation.
Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos Radiofarmacêuticos , Humanos , Compostos Radiofarmacêuticos/uso terapêutico , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Radiometria/métodos , CintilografiaRESUMO
Radionuclide therapy, also called molecular radiotherapy (MRT), has come of age, with several novel radiopharmaceuticals being approved for clinical use or under development in the last decade. External beam radiotherapy (EBRT) is a well-established treatment modality, with about half of all oncologic patients expected to receive at least one external radiation treatment over their disease course. The efficacy and the toxicity of both types of treatment rely on the interaction of radiation with biological tissues. Dosimetry played a fundamental role in the scientific and technological evolution of EBRT, and absorbed doses to the target and to the organs at risk are calculated on a routine basis. In contrast, in MRT the usefulness of internal dosimetry has long been questioned, and a structured path to include absorbed dose calculation is missing. However, following a similar route of development as EBRT, MRT treatments could probably be optimized in a significant proportion of patients, likely based on dosimetry and radiobiology. In the present paper we describe the differences and the similarities between internal and external-beam dosimetry in the context of radiation treatments, and we retrace the main stages of their development over the last decades.
Assuntos
Tartarugas , Animais , Humanos , Radiometria , Compostos Radiofarmacêuticos/uso terapêutico , Dosagem RadioterapêuticaRESUMO
Radiopharmaceutical theranostic treatments have grown exponentially worldwide, and internal dosimetry has attracted attention and resources. Despite some similarities with chemotherapy, radiopharmaceuticals treatments are essentially radiotherapy treatments, as the release of radiation into tissues is the determinant of the observed clinical effects. Therefore, absorbed dose calculations are key to explain dose-effect correlations and to individualize radiopharmaceutical treatments. The present article introduces the basic principles of internal dosimetry and provides an overview of available locoregional and systemic radiopharmaceutical treatments for CNS tumors. The specific characteristics of dosimetry as applied to these treatments are highlighted, along with their limitations and most relevant results. Dosimetry is performed with higher precision and better reproducibility than in the past, and dosimetric data should be systematically collected, as treatment planning and verification may help exploit the full potential of theranostic of CNS tumors.