Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Development ; 143(24): 4571-4581, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27965438

RESUMO

Not all hematopoietic stem cells (HSCs) are alike. They differ in their physical characteristics such as cell cycle status and cell surface marker phenotype, they respond to different extrinsic signals, and they have different lineage outputs following transplantation. The growing body of evidence that supports heterogeneity within HSCs, which constitute the most robust cell fraction at the foundation of the adult hematopoietic system, is currently of great interest and raises questions as to why HSC subtypes exist, how they are generated and whether HSC heterogeneity affects leukemogenesis or treatment options. This Review provides a developmental overview of HSC subtypes during embryonic, fetal and adult stages of hematopoiesis and discusses the possible origins and consequences of HSC heterogeneity.


Assuntos
Hematopoese/fisiologia , Células-Tronco Hematopoéticas/classificação , Células-Tronco Hematopoéticas/citologia , Animais , Células da Medula Óssea/citologia , Linhagem da Célula/fisiologia , Células Endoteliais/citologia , Humanos , Nicho de Células-Tronco
2.
Circ Res ; 118(5): 822-33, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26838788

RESUMO

RATIONALE: Pulmonary arterial hypertension is characterized by vascular remodeling and neomuscularization. PW1(+) progenitor cells can differentiate into smooth muscle cells (SMCs) in vitro. OBJECTIVE: To determine the role of pulmonary PW1(+) progenitor cells in vascular remodeling characteristic of pulmonary arterial hypertension. METHODS AND RESULTS: We investigated their contribution during chronic hypoxia-induced vascular remodeling in Pw1(nLacZ+/-) mouse expressing ß-galactosidase in PW1(+) cells and in differentiated cells derived from PW1(+) cells. PW1(+) progenitor cells are present in the perivascular zone in rodent and human control lungs. Using progenitor markers, 3 distinct myogenic PW1(+) cell populations were isolated from the mouse lung of which 2 were significantly increased after 4 days of chronic hypoxia. The number of proliferating pulmonary PW1(+) cells and the proportion of ß-gal(+) vascular SMC were increased, indicating a recruitment of PW1(+) cells and their differentiation into vascular SMC during early chronic hypoxia-induced neomuscularization. CXCR4 inhibition using AMD3100 prevented PW1(+) cells differentiation into SMC but did not inhibit their proliferation. Bone marrow transplantation experiments showed that the newly formed ß-gal(+) SMC were not derived from circulating bone marrow-derived PW1(+) progenitor cells, confirming a resident origin of the recruited PW1(+) cells. The number of pulmonary PW1(+) cells was also increased in rats after monocrotaline injection. In lung from pulmonary arterial hypertension patients, PW1-expressing cells were observed in large numbers in remodeled vascular structures. CONCLUSIONS: These results demonstrate the existence of a novel population of resident SMC progenitor cells expressing PW1 and participating in pulmonary hypertension-associated vascular remodeling.


Assuntos
Hipertensão Pulmonar/metabolismo , Fatores de Transcrição Kruppel-Like/biossíntese , Músculo Liso Vascular/metabolismo , Células-Tronco/metabolismo , Remodelação Vascular/fisiologia , Animais , Células Cultivadas , Humanos , Hipertensão Pulmonar/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Liso Vascular/patologia , Ratos , Células-Tronco/patologia
4.
Stem Cells ; 31(2): 305-16, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23165704

RESUMO

Human microvascular pericytes (CD146(+)/34(-)/45(-)/56(-)) contain multipotent precursors and repair/regenerate defective tissues, notably skeletal muscle. However, their ability to repair the ischemic heart remains unknown. We investigated the therapeutic potential of human pericytes, purified from skeletal muscle, for treating ischemic heart disease and mediating associated repair mechanisms in mice. Echocardiography revealed that pericyte transplantation attenuated left ventricular dilatation and significantly improved cardiac contractility, superior to CD56+ myogenic progenitor transplantation, in acutely infarcted mouse hearts. Pericyte treatment substantially reduced myocardial fibrosis and significantly diminished infiltration of host inflammatory cells at the infarct site. Hypoxic pericyte-conditioned medium suppressed murine fibroblast proliferation and inhibited macrophage proliferation in vitro. High expression by pericytes of immunoregulatory molecules, including interleukin-6, leukemia inhibitory factor, cyclooxygenase-2, and heme oxygenase-1, was sustained under hypoxia, except for monocyte chemotactic protein-1. Host angiogenesis was significantly increased. Pericytes supported microvascular structures in vivo and formed capillary-like networks with/without endothelial cells in three-dimensional cocultures. Under hypoxia, pericytes dramatically increased expression of vascular endothelial growth factor-A, platelet-derived growth factor-ß, transforming growth factor-ß1 and corresponding receptors while expression of basic fibroblast growth factor, hepatocyte growth factor, epidermal growth factor, and angiopoietin-1 was repressed. The capacity of pericytes to differentiate into and/or fuse with cardiac cells was revealed by green fluorescence protein labeling, although to a minor extent. In conclusion, intramyocardial transplantation of purified human pericytes promotes functional and structural recovery, attributable to multiple mechanisms involving paracrine effects and cellular interactions.


Assuntos
Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Miocárdio/patologia , Pericitos/transplante , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Técnicas de Cultura de Células , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Fibrose/prevenção & controle , Expressão Gênica , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/genética , Miocárdio/metabolismo , Neovascularização Fisiológica , Pericitos/fisiologia , Proteínas Proto-Oncogênicas c-sis/genética , Proteínas Proto-Oncogênicas c-sis/metabolismo , Regeneração/fisiologia , Transplante Heterólogo , Ultrassonografia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Nat Commun ; 15(1): 1653, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395882

RESUMO

Hematopoietic stem cells (HSCs) produce all essential cellular components of the blood. Stromal cell lines supporting HSCs follow a vascular smooth muscle cell (vSMC) differentiation pathway, suggesting that some hematopoiesis-supporting cells originate from vSMC precursors. These pericyte-like precursors were recently identified in the aorta-gonad-mesonephros (AGM) region; however, their role in the hematopoietic development in vivo remains unknown. Here, we identify a subpopulation of NG2+Runx1+ perivascular cells that display a sclerotome-derived vSMC transcriptomic profile. We show that deleting Runx1 in NG2+ cells impairs the hematopoietic development in vivo and causes transcriptional changes in pericytes/vSMCs, endothelial cells and hematopoietic cells in the murine AGM. Importantly, this deletion leads also to a significant reduction of HSC reconstitution potential in the bone marrow in vivo. This defect is developmental, as NG2+Runx1+ cells were not detected in the adult bone marrow, demonstrating the existence of a specialised pericyte population in the HSC-generating niche, unique to the embryo.


Assuntos
Células Endoteliais , Músculo Liso Vascular , Camundongos , Animais , Músculo Liso Vascular/metabolismo , Células Endoteliais/metabolismo , Diferenciação Celular , Células-Tronco Hematopoéticas/metabolismo , Hematopoese/genética , Mesonefro , Gônadas/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo
6.
Cytometry A ; 83(8): 714-20, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23818229

RESUMO

Mesenchymal stem/stromal cells (MSCs) are adult multipotent progenitors of great promise for cell therapy. MSCs can mediate tissue regeneration, immunomodulation, and hematopoiesis support. Despite the unique properties of MSCs and their broad range of potential clinical applications, the very nature of these cells has been uncertain. Furthermore, MSCs are heterogeneous and only defined subpopulations of these are endowed with the particular abilities to sustain hematopoietic stem cells, regulate immune responses, or differentiate into mesodermal cell lineages. It is becoming evident that current criteria used to define cultured polyclonal MSCs (expression of nonspecific markers and in vitro mesodermal differentiation) are not sufficient to fully understand and exploit the potential of these cells. Here, we describe how flow cytometry has been used to reveal a perivascular origin of MSCs. As a result, the prospective purification of MSCs and specialized subsets thereof is now possible, and the clinical use of purified autologous MSCs is now within reach.


Assuntos
Citometria de Fluxo , Células-Tronco Mesenquimais/metabolismo , Tecido Adiposo Branco/citologia , Animais , Antígenos CD/metabolismo , Vasos Sanguíneos/citologia , Separação Celular , Humanos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Medicina Regenerativa
7.
Blood ; 117(21): 5620-30, 2011 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-21355089

RESUMO

Zeb2 (Sip1/Zfhx1b) is a member of the zinc-finger E-box-binding (ZEB) family of transcriptional repressors previously demonstrated to regulate epithelial-to-mesenchymal transition (EMT) processes during embryogenesis and tumor progression. We found high Zeb2 mRNA expression levels in HSCs and hematopoietic progenitor cells (HPCs), and examined Zeb2 function in hematopoiesis through a conditional deletion approach using the Tie2-Cre and Vav-iCre recombination mouse lines. Detailed cellular analysis demonstrated that Zeb2 is dispensable for hematopoietic cluster and HSC formation in the aorta-gonadomesonephros region of the embryo, but is essential for normal HSC/HPC differentiation. In addition, Zeb2-deficient HSCs/HPCs fail to properly colonize the fetal liver and/or bone marrow and show enhanced adhesive properties associated with increased ß1 integrin and Cxcr4 expression. Moreover, deletion of Zeb2 resulted in embryonic (Tie2-Cre) and perinatal (Vav-icre) lethality due to severe cephalic hemorrhaging and decreased levels of angiopoietin-1 and, subsequently, improper pericyte coverage of the cephalic vasculature. These results reveal essential roles for Zeb2 in embryonic hematopoiesis and are suggestive of a role for Zeb2 in hematopoietic-related pathologies in the adult.


Assuntos
Diferenciação Celular , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Transição Epitelial-Mesenquimal , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/citologia , Proteínas de Homeodomínio/fisiologia , Proteínas Repressoras/fisiologia , Animais , Caderinas/metabolismo , Movimento Celular , Feminino , Citometria de Fluxo , Genes Letais , Células-Tronco Hematopoéticas/metabolismo , Integrases/metabolismo , Masculino , Camundongos , Camundongos Knockout , Homeobox 2 de Ligação a E-box com Dedos de Zinco , Dedos de Zinco
8.
STAR Protoc ; 4(1): 102016, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36640365

RESUMO

Mesenchymal stem/stromal cells (MSCs) can differentiate into osteoblasts under appropriate conditions. PDGFRß signaling controls MSC osteogenic potential both transcriptomically and in culture. Here, we present a "computer to the bench" protocol to analyze changes in MSC osteogenic potential at transcriptomic and cellular level in the absence of PDGFRß. We detail the preparation of cells from mouse embryos, the analysis of transcriptomic changes from single-cell RNA-sequencing data, the procedure for MSC derivation and culture, and an osteogenic assay for functional validation. For complete details on the use and execution of this protocol, please refer to Sá da Bandeira et al. (2022).1.


Assuntos
Células-Tronco Mesenquimais , Transcriptoma , Animais , Camundongos , Transcriptoma/genética , Diferenciação Celular/genética , Osteogênese/genética , Perfilação da Expressão Gênica
9.
J Cell Mol Med ; 16(12): 2851-60, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22882758

RESUMO

Mesenchymal stem/stromal cells (MSC) are currently the best candidate therapeutic cells for regenerative medicine related to osteoarticular, muscular, vascular and inflammatory diseases, although these cells remain heterogeneous and necessitate a better biological characterization. We and others recently described that MSC originate from two types of perivascular cells, namely pericytes and adventitial cells and contain the in situ counterpart of MSC in developing and adult human organs, which can be prospectively purified using well defined cell surface markers. Pericytes encircle endothelial cells of capillaries and microvessels and express the adhesion molecule CD146 and the PDGFRß, but lack endothelial and haematopoietic markers such as CD34, CD31, vWF (von Willebrand factor), the ligand for Ulex europaeus 1 (UEA1) and CD45 respectively. The proteoglycan NG2 is a pericyte marker exclusively associated with the arterial system. Besides its expression in smooth muscle cells, smooth muscle actin (αSMA) is also detected in subsets of pericytes. Adventitial cells surround the largest vessels and, opposite to pericytes, are not closely associated to endothelial cells. Adventitial cells express CD34 and lack αSMA and all endothelial and haematopoietic cell markers, as for pericytes. Altogether, pericytes and adventitial perivascular cells express in situ and in culture markers of MSC and display capacities to differentiate towards osteogenic, adipogenic and chondrogenic cell lineages. Importantly, adventitial cells can differentiate into pericyte-like cells under inductive conditions in vitro. Altogether, using purified perivascular cells instead of MSC may bring higher benefits to regenerative medicine, including the possibility, for the first time, to use these cells uncultured.


Assuntos
Tecido Adiposo/citologia , Túnica Adventícia/citologia , Células-Tronco Mesenquimais/fisiologia , Pericitos/fisiologia , Medicina Regenerativa , Túnica Adventícia/fisiologia , Antígenos/metabolismo , Biomarcadores/metabolismo , Antígeno CD146/metabolismo , Diferenciação Celular , Linhagem da Célula , Transplante de Células , Células Cultivadas , Humanos , Proteínas de Membrana , Pericitos/transplante , Proteoglicanas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo
10.
Stem Cells Transl Med ; 11(1): 35-43, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35641167

RESUMO

The vascular wall is comprised of distinct layers controlling angiogenesis, blood flow, vessel anchorage within organs, and cell and molecule transit between blood and tissues. Moreover, some blood vessels are home to essential stem-like cells, a classic example being the existence in the embryo of hemogenic endothelial cells at the origin of definitive hematopoiesis. In recent years, microvascular pericytes and adventitial perivascular cells were observed to include multi-lineage progenitor cells involved not only in organ turnover and regeneration but also in pathologic remodeling, including fibrosis and atherosclerosis. These perivascular mesodermal elements were identified as native forerunners of mesenchymal stem cells. We have presented in this brief review our current knowledge on vessel wall-associated tissue remodeling cells with respect to discriminating phenotypes, functional diversity in health and disease, and potential therapeutic interest.


Assuntos
Células-Tronco Mesenquimais , Células-Tronco de Sangue Periférico , Células Endoteliais , Humanos , Células-Tronco Mesenquimais/fisiologia , Pericitos , Células-Tronco/fisiologia
11.
Nat Metab ; 4(1): 123-140, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35102339

RESUMO

Vascular mural cells (vMCs) play an essential role in the development and maturation of the vasculature by promoting vessel stabilization through their interactions with endothelial cells. Whether endothelial metabolism influences mural cell recruitment and differentiation is unknown. Here, we show that the oxidative pentose phosphate pathway (oxPPP) in endothelial cells is required for establishing vMC coverage of the dorsal aorta during early vertebrate development in zebrafish and mice. We demonstrate that laminar shear stress and blood flow maintain oxPPP activity, which in turn, promotes elastin expression in blood vessels through production of ribose-5-phosphate. Elastin is both necessary and sufficient to drive vMC recruitment and maintenance when the oxPPP is active. In summary, our work demonstrates that endothelial cell metabolism regulates blood vessel maturation by controlling vascular matrix composition and vMC recruitment.


Assuntos
Vasos Sanguíneos/citologia , Vasos Sanguíneos/metabolismo , Matriz Extracelular/metabolismo , Fosforilação Oxidativa , Via de Pentose Fosfato , Animais , Biomarcadores , Elastina/biossíntese , Elastina/genética , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Expressão Gênica , Genes Reporter , Glucose/metabolismo , Hemodinâmica , Camundongos , Camundongos Knockout , Modelos Biológicos , Estresse Oxidativo , Pentosefosfatos/metabolismo , Peixe-Zebra
12.
Cell Rep ; 40(3): 111114, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858557

RESUMO

Hematopoietic stem cell (HSC) generation in the aorta-gonad-mesonephros region requires HSC specification signals from the surrounding microenvironment. In zebrafish, PDGF-B/PDGFRß signaling controls hematopoietic stem/progenitor cell (HSPC) generation and is required in the HSC specification niche. Little is known about murine HSPC specification in vivo and whether PDGF-B/PDGFRß is involved. Here, we show that PDGFRß is expressed in distinct perivascular stromal cell layers surrounding the mid-gestation dorsal aorta, and its deletion impairs hematopoiesis. We demonstrate that PDGFRß+ cells play a dual role in murine hematopoiesis. They act in the aortic niche to support HSPCs, and in addition, PDGFRß+ embryonic precursors give rise to a subset of HSPCs that persist into adulthood. These findings provide crucial information for the controlled production of HSPCs in vitro.


Assuntos
Mesonefro , Peixe-Zebra , Animais , Hematopoese , Células-Tronco Hematopoéticas , Camundongos , Receptor beta de Fator de Crescimento Derivado de Plaquetas , Células Estromais
13.
J Cell Mol Med ; 15(4): 796-808, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20219017

RESUMO

Mesenchymal stem cells (MSC) have been derived from different cultured human tissues, including bone marrow, adipose tissue, amniotic fluid and umbilical cord blood. Only recently it was suggested that MSC descended from perivascular cells, the latter being defined as CD146⁺ neuro-glial proteoglycan (NG)2⁺ platelet-derived growth factor-Rß⁺ ALP⁺ CD34⁻ CD45⁻ von Willebrand factor (vWF)⁻ CD144⁻. Herein we studied the properties of perivascular cells from a novel source, the foetal human umbilical cord (HUC) collected from pre-term newborns. By immunohistochemistry and flow cytometry we show that pre-term/foetal HUCs contain more perivascular cells than their full-term counterparts (2.5%versus 0.15%). Moreover, foetal HUC perivascular cells (HUCPC) express the embryonic cell markers specific embryonic antigen-4, Runx1 and Oct-4 and can be cultured over the long term. To further confirm the MSC identity of these cultured perivascular cells, we also showed their expression at different passages of antigens that typify MSC. The multilineage differentiative capacity of HUCPC into osteogenic, adipogenic and myogenic cell lineages was demonstrated in culture. In the perspective of a therapeutic application in chronic lung disease of pre-term newborns, we demonstrated the in vitro ability of HUCPC to migrate towards an alveolar type II cell line damaged with bleomycin, an anti-cancer agent with known pulmonary toxicity. The secretory profile exhibited by foetal HUCPC in the migration assay suggested a paracrine effect that could be exploited in various clinical conditions including lung disorders.


Assuntos
Diferenciação Celular , Movimento Celular , Sangue Fetal/citologia , Feto/citologia , Pulmão/patologia , Cicatrização , Animais , Antraquinonas/metabolismo , Bioensaio , Biomarcadores/metabolismo , Proliferação de Células , Separação Celular , Forma Celular , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica , Fenótipo , Proteoma/metabolismo , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Coloração e Rotulagem
14.
Arterioscler Thromb Vasc Biol ; 30(6): 1104-9, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20453168

RESUMO

Independent studies by numerous investigators have shown that it is possible to harvest multipotent progenitor cells from diverse dissociated and cultured fetal, perinatal, and principally adult developed tissues. Despite the increasingly recognized medical value of these progenitor cells, the archetype of which remains the mesenchymal stem cell, this indirect extraction method has precluded the understanding of their native identity, tissue distribution, and frequency. Consistent with other researchers, we have hypothesized that blood vessels in virtually all organs harbor ubiquitous stem cells. We have identified, marked, and sorted to homogeneity by flow cytometry endothelial and perivascular cells in a large selection of human fetal, perinatal, and adult organs. Perivascular cells, including pericytes in the smallest blood vessels and adventitial cells around larger ones, natively express mesenchymal stem cell markers and produce in culture a long-lasting progeny of multilineage mesodermal progenitor cells. Herein, we review results from our and other laboratories that suggest a perivascular origin for mesenchymal stem cells and other adult progenitor cells. Recent experiments illustrate the therapeutic potential of human pericytes to regenerate skeletal muscle and promote functional recovery in the diseased heart and kidney.


Assuntos
Células-Tronco Adultas/fisiologia , Diferenciação Celular , Linhagem da Célula , Células-Tronco Mesenquimais/fisiologia , Células-Tronco Multipotentes/fisiologia , Pericitos/fisiologia , Células Estromais/fisiologia , Adulto , Células-Tronco Adultas/transplante , Animais , Biomarcadores/metabolismo , Proliferação de Células , Células-Tronco Fetais/fisiologia , Humanos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Multipotentes/transplante , Neovascularização Fisiológica , Regeneração
15.
Methods Mol Biol ; 2235: 37-45, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33576969

RESUMO

Pericytes are found in all vascularized organs and are defined anatomically as perivascular cells that closely surround endothelial cells in capillaries and microvessels and are embedded within the same basement membrane. They have been shown to have diverse physiological and pathological functions including regulation of blood pressure, and tissue regeneration and scarring. Fundamental to understanding the role these cells play in these diverse processes is the ability to accurately identify and localize them in vivo. To do this, we have developed multicolor immunohistochemistry protocols described in this chapter.


Assuntos
Imuno-Histoquímica/métodos , Pericitos/citologia , Pericitos/transplante , Capilares/citologia , Diferenciação Celular/fisiologia , Células Cultivadas , Técnicas de Cocultura , Células Endoteliais/citologia , Humanos , Microvasos/citologia , Pericitos/metabolismo , Fenótipo
16.
Methods Mol Biol ; 2235: 27-35, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33576968

RESUMO

Pericytes are mural cells closely associated with endothelial cells in capillaries and microvessels. They are precursors of mesenchymal stem/stromal cells that have historically been retrospectively characterized in culture. We established a protocol, described in this chapter, to characterize and isolate pericytes from multiple human organs by flow cytometry and fluorescence-activated cell sorting. This prospective purification of pericytes brings us a step forward in the development of strategies for their use in the clinic.


Assuntos
Citometria de Fluxo/métodos , Pericitos/citologia , Pericitos/transplante , Capilares/citologia , Técnicas de Cultura de Células/métodos , Separação Celular/métodos , Células Cultivadas , Células Endoteliais/citologia , Humanos , Células-Tronco Mesenquimais/citologia , Microvasos/citologia , Pericitos/metabolismo , Fenótipo
17.
Nat Biotechnol ; 25(9): 1025-34, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17767154

RESUMO

We document anatomic, molecular and developmental relationships between endothelial and myogenic cells within human skeletal muscle. Cells coexpressing myogenic and endothelial cell markers (CD56, CD34, CD144) were identified by immunohistochemistry and flow cytometry. These myoendothelial cells regenerate myofibers in the injured skeletal muscle of severe combined immunodeficiency mice more effectively than CD56+ myogenic progenitors. They proliferate long term, retain a normal karyotype, are not tumorigenic and survive better under oxidative stress than CD56+ myogenic cells. Clonally derived myoendothelial cells differentiate into myogenic, osteogenic and chondrogenic cells in culture. Myoendothelial cells are amenable to biotechnological handling, including purification by flow cytometry and long-term expansion in vitro, and may have potential for the treatment of human muscle disease.


Assuntos
Células Endoteliais/citologia , Músculo Esquelético/citologia , Adolescente , Adulto , Idoso , Animais , Biomarcadores/metabolismo , Antígeno CD56 , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Criança , Células Clonais , Citometria de Fluxo , Humanos , Camundongos , Camundongos SCID , Pessoa de Meia-Idade , Músculo Esquelético/fisiologia , Neoplasias/patologia , Regeneração , Fatores de Tempo
18.
Artigo em Inglês | MEDLINE | ID: mdl-32185170

RESUMO

Mesenchymal stem cells are culture-derived mesodermal progenitors isolatable from all vascularized tissues. In spite of multiple fundamental, pre-clinical and clinical studies, the native identity and role in tissue repair of MSCs have long remained elusive, with MSC selection in vitro from total cell suspensions essentially unchanged as a mere primary culture for half a century. Recent investigations have helped understand the tissue origin of these progenitor cells, and uncover alternative effects of MSCs on tissue healing via growth factor secretion and interaction with the immune system. In this review, we describe current trends in MSC biology and discuss how these may improve the use of these therapeutic cells in tissue engineering and regenerative medicine.

19.
Stem Cells ; 26(9): 2425-33, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18617684

RESUMO

Brown adipose tissue uncoupling protein-1 (UCP1) plays a major role in the control of energy balance in rodents. It has long been thought, however, that there is no physiologically relevant UCP1 expression in adult humans. In this study we show, using an original approach consisting of sorting cells from various tissues and differentiating them in an adipogenic medium, that a stationary population of skeletal muscle cells expressing the CD34 surface protein can differentiate in vitro into genuine brown adipocytes with a high level of UCP1 expression and uncoupled respiration. These cells can be expanded in culture, and their UCP1 mRNA expression is strongly increased by cell-permeating cAMP derivatives and a peroxisome-proliferator-activated receptor-gamma (PPARgamma) agonist. Furthermore, UCP1 mRNA was detected in the skeletal muscle of adult humans, and its expression was increased in vivo by PPARgamma agonist treatment. All the studies concerning UCP1 expression in adult humans have until now been focused on the white adipose tissue. Here we show for the first time the existence in human skeletal muscle and the prospective isolation of progenitor cells with a high potential for UCP1 expression. The discovery of this reservoir generates a new hope of treating obesity by acting on energy dissipation.


Assuntos
Adipócitos Marrons/citologia , Músculo Esquelético/citologia , Células-Tronco/citologia , Adipócitos Marrons/metabolismo , Adulto , Idoso , Animais , Antígenos CD34/metabolismo , Diferenciação Celular , Células Cultivadas , Feminino , Feto , Humanos , Canais Iônicos/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação Oxidativa , Consumo de Oxigênio , PPAR gama/agonistas , PPAR gama/metabolismo , Células-Tronco/metabolismo , Proteína Desacopladora 1
20.
PLoS One ; 12(5): e0177308, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28489940

RESUMO

For over 15 years, human subcutaneous adipose tissue has been recognized as a rich source of tissue resident mesenchymal stem/stromal cells (MSC). The isolation of perivascular progenitor cells from human adipose tissue by a cell sorting strategy was first published in 2008. Since this time, the interest in using pericytes and related perivascular stem/stromal cell (PSC) populations for tissue engineering has significantly increased. Here, we describe a set of experiments identifying, isolating and characterizing PSC from canine tissue (N = 12 canine adipose tissue samples). Results showed that the same antibodies used for human PSC identification and isolation are cross-reactive with canine tissue (CD45, CD146, CD34). Like their human correlate, canine PSC demonstrate characteristics of MSC including cell surface marker expression, colony forming unit-fibroblast (CFU-F) inclusion, and osteogenic differentiation potential. As well, canine PSC respond to osteoinductive signals in a similar fashion as do human PSC, such as the secreted differentiation factor NEL-Like Molecule-1 (NELL-1). Nevertheless, important differences exist between human and canine PSC, including differences in baseline osteogenic potential. In summary, canine PSC represent a multipotent mesenchymogenic cell source for future translational efforts in tissue engineering.


Assuntos
Tecido Adiposo/citologia , Separação Celular , Osteogênese , Células Estromais/citologia , Engenharia Tecidual , Animais , Osso e Ossos/citologia , Osso e Ossos/fisiologia , Proteínas de Ligação ao Cálcio , Diferenciação Celular , Separação Celular/métodos , Células Cultivadas , Cães , Fator 2 de Crescimento de Fibroblastos/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas Recombinantes/metabolismo , Células Estromais/metabolismo , Engenharia Tecidual/métodos , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA