Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Cell ; 150(5): 1002-15, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22921914

RESUMO

In plants, where cells cannot migrate, asymmetric cell divisions (ACDs) must be confined to the appropriate spatial context. We investigate tissue-generating asymmetric divisions in a stem cell daughter within the Arabidopsis root. Spatial restriction of these divisions requires physical binding of the stem cell regulator SCARECROW (SCR) by the RETINOBLASTOMA-RELATED (RBR) protein. In the stem cell niche, SCR activity is counteracted by phosphorylation of RBR through a cyclinD6;1-CDK complex. This cyclin is itself under transcriptional control of SCR and its partner SHORT ROOT (SHR), creating a robust bistable circuit with either high or low SHR-SCR complex activity. Auxin biases this circuit by promoting CYCD6;1 transcription. Mathematical modeling shows that ACDs are only switched on after integration of radial and longitudinal information, determined by SHR and auxin distribution, respectively. Coupling of cell-cycle progression to protein degradation resets the circuit, resulting in a "flip flop" that constrains asymmetric cell division to the stem cell region.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Raízes de Plantas/citologia , Sequência de Aminoácidos , Divisão Celular Assimétrica , Ciclina D/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Ácidos Indolacéticos/metabolismo , Células do Mesofilo/metabolismo , Dados de Sequência Molecular , Fosforilação , Raízes de Plantas/metabolismo , Alinhamento de Sequência
2.
Cell ; 149(2): 383-96, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22500804

RESUMO

Despite their pivotal role in plant development, control mechanisms for oriented cell divisions have remained elusive. Here, we describe how a precisely regulated cell division orientation switch in an Arabidopsis stem cell is controlled by upstream patterning factors. We show that the stem cell regulatory PLETHORA transcription factors induce division plane reorientation by local activation of auxin signaling, culminating in enhanced expression of the microtubule-associated MAP65 proteins. MAP65 upregulation is sufficient to reorient the cortical microtubular array through a CLASP microtubule-cell cortex interaction mediator-dependent mechanism. CLASP differentially localizes to cell faces in a microtubule- and MAP65-dependent manner. Computational simulations clarify how precise 90° switches in cell division planes can follow self-organizing properties of the microtubule array in combination with biases in CLASP localization. Our work demonstrates how transcription factor-mediated processes regulate the cellular machinery to control orientation of formative cell divisions in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Células Vegetais/metabolismo , Divisão Celular , Ácidos Indolacéticos/metabolismo , Meristema/citologia , Meristema/metabolismo , Epiderme Vegetal/citologia , Epiderme Vegetal/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Fatores de Transcrição/metabolismo
3.
Plant J ; 112(6): 1507-1524, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36305297

RESUMO

The colonization of land by a single streptophyte algae lineage some 450 million years ago has been linked to multiple key innovations such as three-dimensional growth, alternation of generations, the presence of stomata, as well as innovations inherent to the birth of major plant lineages, such as the origins of vascular tissues, roots, seeds and flowers. Multicellularity, which evolved multiple times in the Chloroplastida coupled with precise spatiotemporal control of proliferation and differentiation were instrumental for the evolution of these traits. RETINOBLASTOMA-RELATED (RBR), the plant homolog of the metazoan Retinoblastoma protein (pRB), is a highly conserved and multifunctional core cell cycle regulator that has been implicated in the evolution of multicellularity in the green lineage as well as in plant multicellularity-related processes such as proliferation, differentiation, stem cell regulation and asymmetric cell division. RBR fulfills these roles through context-specific protein-protein interactions with proteins containing the Leu-x-Cys-x-Glu (LxCxE) short-linear motif (SLiM); however, how RBR-LxCxE interactions have changed throughout major innovations in the Viridiplantae kingdom is a question that remains unexplored. Here, we employ an in silico evo-devo approach to predict and analyze potential RBR-LxCxE interactions in different representative species of key Chloroplastida lineages, providing a valuable resource for deciphering RBR-LxCxE multiple functions. Furthermore, our analyses suggest that RBR-LxCxE interactions are an important component of RBR functions and that interactions with chromatin modifiers/remodelers, DNA replication and repair machinery are highly conserved throughout the Viridiplantae, while LxCxE interactions with transcriptional regulators likely diversified throughout the water-to-land transition.


Assuntos
Neoplasias da Retina , Retinoblastoma , Animais , Proteína do Retinoblastoma/metabolismo , Diferenciação Celular
4.
Planta ; 257(6): 105, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37120771

RESUMO

MAIN CONCLUSION: Our study presents evidence for a novel mechanism for RBR function in transcriptional gene silencing by interacting with key players of the RdDM pathway in Arabidopsis and several plant clades. Transposable elements and other repetitive elements are silenced by the RNA-directed DNA methylation pathway (RdDM). In RdDM, POLIV-derived transcripts are converted into double-stranded RNA (dsRNA) by the activity of RDR2 and subsequently processed into 24 nucleotide short interfering RNAs (24-nt siRNAs) by DCL3. 24-nt siRNAs serve as guides to direct AGO4-siRNA complexes to chromatin-bound POLV-derived transcripts generated from the template/target DNA. The interaction between POLV, AGO4, DMS3, DRD1, RDM1 and DRM2 promotes DRM2-mediated de novo DNA methylation. The Arabidopsis Retinoblastoma protein homolog (RBR) is a master regulator of the cell cycle, stem cell maintenance, and development. We in silico predicted and explored experimentally the protein-protein interactions (PPIs) between RBR and members of the RdDM pathway. We found that the largest subunits of POLIV and POLV (NRPD1 and NRPE1), the shared second largest subunit of POLIV and POLV (NRPD/E2), RDR1, RDR2, DCL3, DRM2, and SUVR2 contain canonical and non-canonical RBR binding motifs and several of them are conserved since algae and bryophytes. We validated experimentally PPIs between Arabidopsis RBR and several of the RdDM pathway proteins. Moreover, seedlings from loss-of-function mutants in RdDM and RBR show similar phenotypes in the root apical meristem. We show that RdDM and SUVR2 targets are up-regulated in the 35S:AmiGO-RBR background.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Neoplasias da Retina , Retinoblastoma , Arabidopsis/genética , Arabidopsis/metabolismo , Metilação de DNA/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , RNA Polimerases Dirigidas por DNA/genética , Retinoblastoma/genética , RNA Interferente Pequeno/genética , RNA de Cadeia Dupla/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Neoplasias da Retina/genética , Regulação da Expressão Gênica de Plantas , Ribonuclease III/genética
5.
Dev Dyn ; 251(6): 1035-1053, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35040539

RESUMO

BACKGROUND: Limb regeneration in the axolotl is achieved by epimorphosis, thus depending on the blastema formation, a mass of progenitor cells capable of proliferating and differentiating to recover all lost structures functionally. During regeneration, the blastema cells accelerate the cell cycle and duplicate its genome, which is inherently difficult to replicate because of its length and composition, thus being prone to suffer double-strand breaks. RESULTS: We identified and characterized two remarkable components of the homologous recombination repair pathway (Amex.RAD51 and Amex.MRE11), which were heterologously expressed, biochemically characterized, and inhibited by specific chemicals. These same inhibitors were applied at different time points after amputation to study their effects during limb regeneration. We observed an increase in cellular senescent accompanied by a slight delay in regeneration at 28 days postamputation regenerated tissues; moreover, inhibitors caused a rise in the double-strand break signaling as a response to the inhibition of the repair mechanisms. CONCLUSIONS: We confirmed the participation and importance of homologous recombination during limb regeneration. The chemical inhibition induces double-strand breaks that lead to DNA damage associated senescence, or in an alternatively way, this damage could be possibly repaired by a different DNA repair pathway, permitting proper regeneration and avoiding senescence.


Assuntos
Ambystoma mexicanum , Regeneração , Ambystoma mexicanum/fisiologia , Amputação Cirúrgica , Animais , Dano ao DNA , Reparo do DNA , Extremidades/fisiologia , Regeneração/fisiologia
6.
Plant Cell ; 31(8): 1751-1766, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31142581

RESUMO

Desert plants have developed mechanisms for adapting to hostile desert conditions, yet these mechanisms remain poorly understood. Here, we describe two unique modes used by desert date palms (Phoenix dactylifera) to protect their meristematic tissues during early organogenesis. We used x-ray micro-computed tomography combined with high-resolution tissue imaging to reveal that, after germination, development of the embryo pauses while it remains inside a dividing and growing cotyledonary petiole. Transcriptomic and hormone analyses show that this developmental arrest is associated with the low expression of development-related genes and accumulation of hormones that promote dormancy and confer resistance to stress. Furthermore, organ-specific cell-type mapping demonstrates that organogenesis occurs inside the cotyledonary petiole, with identifiable root and shoot meristems and their respective stem cells. The plant body emerges from the surrounding tissues with developed leaves and a complex root system that maximizes efficient nutrient and water uptake. We further show that, similar to its role in Arabidopsis (Arabidopsis thaliana), the SHORT-ROOT homolog from date palms functions in maintaining stem cell activity and promoting formative divisions in the root ground tissue. Our findings provide insight into developmental programs that confer adaptive advantages in desert plants that thrive in hostile habitats.


Assuntos
Phoeniceae/metabolismo , Phoeniceae/fisiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Meristema/genética , Meristema/metabolismo , Meristema/fisiologia , Phoeniceae/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética
7.
Cell Biol Int ; 46(12): 1992-1998, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35979661

RESUMO

Compared to other animals, the spontaneous occurrence of tumors in wild amphibians is relatively rare, generally limited to specific populations or species. The number of reports of spontaneous tumors in amphibians known up to 1986 was 491 cases in anurans and about 253 cases in urodeles. Similarly, there have been many, unsuccessful attempts to chemically or biologically induce tumors in amphibians. With these considerations, it is inevitable to wonder: do urodeles and anurans have an inherent resistance to cancer? Here, we review the spontaneous and induced occurrence of tumors in amphibians in a timeline, as well as failed attempts to induce tumors in these amphibians. Indeed, recent studies seem to indicate that there is a relationship between regeneration and cancer because regenerating tissues seem to resist tumorigenesis, as opposed to nonregenerative tissues of the same amphibian models. Although the mechanisms that allow regenerating tissues to resist tumorigenesis have not been elucidated, it is worth to note that, in addition to the apparent relationship between regeneration and cancer, amphibians possess characteristics that could contribute to their ability to resist the development of neoplastic events. The implications of these features in cancer susceptibility are discussed.


Assuntos
Anfíbios , Neoplasias , Animais , Neoplasias/veterinária , Neoplasias/patologia , Transformação Celular Neoplásica
8.
Dev Dyn ; 250(6): 788-799, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33295131

RESUMO

The remarkable regenerative capabilities of the salamander Ambystoma mexicanum have turned it into one of the principal models to study limb regeneration. During this process, a mass of low differentiated and highly proliferative cells, called blastema, propagates to reestablish the lost tissue in an accelerated way. Such a process implies the replication of a huge genome, 10 times larger than humans, with about 65.6% of repetitive sequences. These features make the axolotl genome inherently difficult to replicate and prone to bear mutations. In this context, the role of DNA repair mechanisms acquires great relevance to maintain genomic stability, especially if we consider the necessity of ensuring the correct replication and integrity of such a large genome in the blastema cells, which are key for tissue regeneration. On the contrary, DNA damage accumulation in these cells may result in senescence, apoptosis and premature differentiation, all of them are mechanisms employed to avoid DNA damage perpetuation but with the potential to affect the limb regeneration process. Here we review and discuss the current knowledge on the implications of DNA damage responses during salamander regeneration.


Assuntos
Ambystoma mexicanum/fisiologia , Dano ao DNA , Reparo do DNA , Regeneração/fisiologia , Animais
9.
Dev Biol ; 466(1-2): 22-35, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32828730

RESUMO

Metamorphosis is a postembryonic developmental process that involves morphophysiological and behavioral changes, allowing organisms to adapt into a novel environment. In some amphibians, aquatic organisms undergo metamorphosis to adapt in a terrestrial environment. In this process, these organisms experience major changes in their circulatory, respiratory, digestive, excretory and reproductive systems. We performed a transcriptional global analysis of heart, lung and gills during diverse stages of Ambystoma velasci to investigate its metamorphosis. In our analyses, we identified eight gene clusters for each organ, according to the expression patterns of differentially expressed genes. We found 4064 differentially expressed genes in the heart, 4107 in the lung and 8265 in the gills. Among the differentially expressed genes in the heart, we observed genes involved in the differentiation of cardiomyocytes in the interatrial zone, vasculogenesis and in the maturation of coronary vessels. In the lung, we found genes differentially expressed related to angiogenesis, alveolarization and synthesis of the surfactant protein. In the case of the gills, the most prominent biological processes identified are degradation of extracellular matrix, apoptosis and keratin production. Our study sheds light on the transcriptional responses and the pathways modulation involved in the transformation of the facultative metamorphic salamander A. velasci in an organ-specific manner.


Assuntos
Proteínas de Anfíbios/biossíntese , Embrião não Mamífero/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Metamorfose Biológica/fisiologia , Transcriptoma/fisiologia , Ambystoma , Animais , Especificidade de Órgãos/fisiologia
10.
Int J Mol Sci ; 22(8)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33917959

RESUMO

Lateral root (LR) formation is an example of a plant post-embryonic organogenesis event. LRs are issued from non-dividing cells entering consecutive steps of formative divisions, proliferation and elongation. The chromatin remodeling protein PICKLE (PKL) negatively regulates auxin-mediated LR formation through a mechanism that is not yet known. Here we show that PKL interacts with RETINOBLASTOMA-RELATED 1 (RBR1) to repress the LATERAL ORGAN BOUNDARIES-DOMAIN 16 (LBD16) promoter activity. Since LBD16 function is required for the formative division of LR founder cells, repression mediated by the PKL-RBR1 complex negatively regulates formative division and LR formation. Inhibition of LR formation by PKL-RBR1 is counteracted by auxin, indicating that, in addition to auxin-mediated transcriptional responses, the fine-tuned process of LR formation is also controlled at the chromatin level in an auxin-signaling dependent manner.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , DNA Helicases/metabolismo , Organogênese Vegetal/genética , Desenvolvimento Vegetal/genética , Raízes de Plantas/fisiologia , Montagem e Desmontagem da Cromatina , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Transdução de Sinais
11.
Int J Mol Sci ; 21(21)2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33171770

RESUMO

Phosphate (Pi) is a pivotal nutrient that constraints plant development and productivity in natural ecosystems. Land colonization by plants, more than 470 million years ago, evolved adaptive mechanisms to conquer Pi-scarce environments. However, little is known about the molecular basis underlying such adaptations at early branches of plant phylogeny. To shed light on how early divergent plants respond to Pi limitation, we analyzed the morpho-physiological and transcriptional dynamics of Marchantia polymorpha upon Pi starvation. Our phylogenomic analysis highlights some gene networks present since the Chlorophytes and others established in the Streptophytes (e.g., PHR1-SPX1 and STOP1-ALMT1, respectively). At the morpho-physiological level, the response is characterized by the induction of phosphatase activity, media acidification, accumulation of auronidins, reduction of internal Pi concentration, and developmental modifications of rhizoids. The transcriptional response involves the induction of MpPHR1, Pi transporters, lipid turnover enzymes, and MpMYB14, which is an essential transcription factor for auronidins biosynthesis. MpSTOP2 up-regulation correlates with expression changes in genes related to organic acid biosynthesis and transport, suggesting a preference for citrate exudation. An analysis of MpPHR1 binding sequences (P1BS) shows an enrichment of this cis regulatory element in differentially expressed genes. Our study unravels the strategies, at diverse levels of organization, exerted by M. polymorpha to cope with low Pi availability.


Assuntos
Marchantia/genética , Marchantia/metabolismo , Fosfatos/metabolismo , Ecossistema , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Redes Reguladoras de Genes/efeitos dos fármacos , Redes Reguladoras de Genes/genética , Hepatófitas/metabolismo , Filogenia , Fatores de Transcrição/metabolismo
12.
Dev Biol ; 442(1): 28-39, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29705332

RESUMO

In plants, the best characterized plant regeneration process is de novo organogenesis. This type of regeneration is characterized by the formation of a multicellular structure called callus. Calli are induced via phytohormone treatment of plant sections. The callus formation in plants like Agave species with Crassulacean Acid Metabolism (CAM) is poorly studied. In this study, we induced callus formation from Agave salmiana leaves and describe cell arrangement in this tissue. Moreover, we determined and analyzed the transcriptional program of calli, as well as those of differentiated root and leaf tissues, by using RNA-seq. We were able to reconstruct 170,844 transcripts of which 40,644 have a full Open Reading Frame (ORF). The global profile obtained by Next Generation Sequencing (NGS) reveals that several callus-enriched protein coding transcripts are orthologs of previously reported factors highly expressed in Arabidopsis calli. At least 62 genes were differentially expressed in Agave calli, 50 of which were up-regulated. Several of these are actively involved in the perception of, and response to, auxin and cytokinin. Not only are these the first results for the A. salmiana callus, but they provide novel data from roots and leaves of this Agave species, one of the largest non-tree plants in nature.


Assuntos
Agave/genética , Organogênese Vegetal/genética , Regeneração/genética , Crassulaceae/genética , Citocininas/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Ácidos Indolacéticos/metabolismo , Organogênese Vegetal/fisiologia , Reguladores de Crescimento de Plantas/genética , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Transcriptoma/genética
13.
Dev Biol ; 433(2): 227-239, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29291975

RESUMO

The axolotl (Ambystoma mexicanum) is the vertebrate model system with the highest regeneration capacity. Experimental tools established over the past 100 years have been fundamental to start unraveling the cellular and molecular basis of tissue and limb regeneration. In the absence of a reference genome for the Axolotl, transcriptomic analysis become fundamental to understand the genetic basis of regeneration. Here we present one of the most diverse transcriptomic data sets for Axolotl by profiling coding and non-coding RNAs from diverse tissues. We reconstructed a population of 115,906 putative protein coding mRNAs as full ORFs (including isoforms). We also identified 352 conserved miRNAs and 297 novel putative mature miRNAs. Systematic enrichment analysis of gene expression allowed us to identify tissue-specific protein-coding transcripts. We also found putative novel and conserved microRNAs which potentially target mRNAs which are reported as important disease candidates in heart and liver.


Assuntos
Ambystoma mexicanum/genética , Regulação da Expressão Gênica , RNA Mensageiro/genética , Regeneração/genética , Transcrição Gênica , Transcriptoma , Ambystoma mexicanum/fisiologia , Animais , Feminino , Biblioteca Gênica , Ontologia Genética , Humanos , MicroRNAs/biossíntese , MicroRNAs/genética , Especificidade de Órgãos , Análise de Componente Principal , RNA Mensageiro/biossíntese , RNA Interferente Pequeno/genética , Análise de Sequência de RNA , Especificidade da Espécie
14.
Plant Cell ; 27(4): 1185-99, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25829440

RESUMO

Plant cells cannot rearrange their positions; therefore, sharp tissue boundaries must be accurately programmed. Movement of the cell fate regulator SHORT-ROOT from the stele to the ground tissue has been associated with transferring positional information across tissue boundaries. The zinc finger BIRD protein JACKDAW has been shown to constrain SHORT-ROOT movement to a single layer, and other BIRD family proteins were postulated to counteract JACKDAW's role in restricting SHORT-ROOT action range. Here, we report that regulation of SHORT-ROOT movement requires additional BIRD proteins whose action is critical for the establishment and maintenance of the boundary between stele and ground tissue. We show that BIRD proteins act in concert and not in opposition. The exploitation of asymmetric redundancies allows the separation of two BIRD functions: constraining SHORT-ROOT spread through nuclear retention and transcriptional regulation of key downstream SHORT-ROOT targets, including SCARECROW and CYCLIND6. Our data indicate that BIRD proteins promote formative divisions and tissue specification in the Arabidopsis thaliana root meristem ground tissue by tethering and regulating transcriptional competence of SHORT-ROOT complexes. As a result, a tissue boundary is not "locked in" after initial patterning like in many animal systems, but possesses considerable developmental plasticity due to continuous reliance on mobile transcription factors.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Meristema/citologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Meristema/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo
15.
Proc Natl Acad Sci U S A ; 112(52): E7293-302, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26668375

RESUMO

Phosphate (Pi) availability is a significant limiting factor for plant growth and productivity in both natural and agricultural systems. To cope with such limiting conditions, plants have evolved a myriad of developmental and biochemical strategies to enhance the efficiency of Pi acquisition and assimilation to avoid nutrient starvation. In the past decade, these responses have been studied in detail at the level of gene expression; however, the possible epigenetic components modulating plant Pi starvation responses have not been thoroughly investigated. Here, we report that an extensive remodeling of global DNA methylation occurs in Arabidopsis plants exposed to low Pi availability, and in many instances, this effect is related to changes in gene expression. Modifications in methylation patterns within genic regions were often associated with transcriptional activation or repression, revealing the important role of dynamic methylation changes in modulating the expression of genes in response to Pi starvation. Moreover, Arabidopsis mutants affected in DNA methylation showed that changes in DNA methylation patterns are required for the accurate regulation of a number of Pi-starvation-responsive genes and that DNA methylation is necessary to establish proper morphological and physiological phosphate starvation responses.


Assuntos
Arabidopsis/genética , Metilação de DNA , Epigênese Genética , Epigenômica/métodos , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Fosfatos/metabolismo , Adaptação Fisiológica/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , DNA (Citosina-5-)-Metiltransferases/genética , Mutação , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
New Phytol ; 216(1): 76-89, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28742236

RESUMO

The Arabidopsis thaliana gene XYLEM NAC DOMAIN1 (XND1) is upregulated in xylem tracheary elements. Yet overexpression of XND1 blocks differentiation of tracheary elements. The molecular mechanism of XND1 action was investigated. Phylogenetic and motif analyses indicated that XND1 and its homologs are present only in angiosperms and possess a highly conserved C-terminal region containing linear motifs (CKII-acidic, LXCXE, E2FTD -like and LXCXE-mimic) predicted to interact with the cell cycle and differentiation regulator RETINOBLASTOMA-RELATED (RBR). Protein-protein interaction and functional analyses of XND1 deletion mutants were used to test the importance of RBR-interaction motifs. Deletion of either the LXCXE or the LXCXE-mimic motif reduced both the XND1-RBR interaction and XND1 efficacy as a repressor of differentiation, with loss of the LXCXE motif having the strongest negative impacts. The function of the XND1 C-terminal domain could be partially replaced by RBR fused to the N-terminal domain of XND1. XND1 also transactivated gene expression in yeast and plants. The properties of XND1, a transactivator that depends on multiple linear RBR-interaction motifs to inhibit differentiation, have not previously been described for a plant protein. XND1 harbors an apparently angiosperm-specific combination of interaction motifs potentially linking the general differentiation regulator RBR with a xylem-specific pathway for inhibition of differentiation.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Diferenciação Celular , Sequência Conservada , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Xilema/citologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Arabidopsis , Fenótipo , Fosforilação , Regiões Promotoras Genéticas/genética , Ligação Proteica , Domínios Proteicos , Homologia de Sequência de Aminoácidos , Transativadores/metabolismo
17.
Plant Cell ; 25(11): 4469-78, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24285791

RESUMO

Maintenance of mitotic cell clusters such as meristematic cells depends on their capacity to maintain the balance between cell division and cell differentiation necessary to control organ growth. In the Arabidopsis thaliana root meristem, the antagonistic interaction of two hormones, auxin and cytokinin, regulates this balance by positioning the transition zone, where mitotically active cells lose their capacity to divide and initiate their differentiation programs. In animals, a major regulator of both cell division and cell differentiation is the tumor suppressor protein RETINOBLASTOMA. Here, we show that similarly to its homolog in animal systems, the plant RETINOBLASTOMA-RELATED (RBR) protein regulates the differentiation of meristematic cells at the transition zone by allowing mRNA accumulation of AUXIN RESPONSE FACTOR19 (ARF19), a transcription factor involved in cell differentiation. We show that both RBR and the cytokinin-dependent transcription factor ARABIDOPSIS RESPONSE REGULATOR12 are required to activate the transcription of ARF19, which is involved in promoting cell differentiation and thus root growth.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Citocininas/metabolismo , Meristema/citologia , Raízes de Plantas/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Diferenciação Celular , Regulação da Expressão Gênica de Plantas , Histidina Quinase , Meristema/genética , Meristema/metabolismo , Raízes de Plantas/citologia , Plantas Geneticamente Modificadas , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
PLoS Biol ; 11(11): e1001724, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24302889

RESUMO

Quiescent long-term somatic stem cells reside in plant and animal stem cell niches. Within the Arabidopsis root stem cell population, the Quiescent Centre (QC), which contains slowly dividing cells, maintains surrounding short-term stem cells and may act as a long-term reservoir for stem cells. The RETINOBLASTOMA-RELATED (RBR) protein cell-autonomously reinforces mitotic quiescence in the QC. RBR interacts with the stem cell transcription factor SCARECROW (SCR) through an LxCxE motif. Disruption of this interaction by point mutation in SCR or RBR promotes asymmetric divisions in the QC that renew short-term stem cells. Analysis of the in vivo role of quiescence in the root stem cell niche reveals that slow cycling within the QC is not needed for structural integrity of the niche but allows the growing root to cope with DNA damage.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Meristema/citologia , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proliferação de Células , Técnicas de Silenciamento de Genes , Meristema/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapas de Interação de Proteínas , Nicho de Células-Tronco , Células-Tronco/fisiologia
19.
J Exp Bot ; 63(5): 2189-202, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22210906

RESUMO

Plants have evolved a plethora of responses to cope with phosphate (Pi) deficiency, including the transcriptional activation of a large set of genes. Among Pi-responsive genes, the expression of the Arabidopsis phospholipase DZ2 (PLDZ2) is activated to participate in the degradation of phospholipids in roots in order to release Pi to support other cellular activities. A deletion analysis was performed to identify the regions determining the strength, tissue-specific expression, and Pi responsiveness of this regulatory region. This study also reports the identification and characterization of a transcriptional enhancer element that is present in the PLDZ2 promoter and able to confer Pi responsiveness to a minimal, inactive 35S promoter. This enhancer also shares the cytokinin and sucrose responsive properties observed for the intact PLDZ2 promoter. The EZ2 element contains two P1BS motifs, each of which is the DNA binding site of transcription factor PHR1. Mutation analysis showed that the P1BS motifs present in EZ2 are necessary but not sufficient for the enhancer function, revealing the importance of adjacent sequences. The structural organization of EZ2 is conserved in the orthologous genes of at least eight families of rosids, suggesting that architectural features such as the distance between the two P1BS motifs are also important for the regulatory properties of this enhancer element.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica de Plantas/genética , Fosfatos/deficiência , Fosfolipase D/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Arabidopsis/citologia , Arabidopsis/enzimologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Análise Mutacional de DNA , Dados de Sequência Molecular , Especificidade de Órgãos , Fosfolipase D/metabolismo , Fosfolipídeos/metabolismo , Filogenia , Raízes de Plantas/citologia , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Alinhamento de Sequência , Deleção de Sequência
20.
J Exp Bot ; 63(14): 5203-21, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22791820

RESUMO

In Arabidopsis thaliana, XIPOTL1 encodes a phosphoethanolamine N-methyltransferase with a central role in phosphatidylcholine biosynthesis via the methylation pathway. To gain further insights into the mechanisms that regulate XIPOTL1 expression, the effect of upstream open reading frame 30 (uORF30) on the translation of the major ORF (mORF) in the presence or absence of endogenous choline (Cho) or phosphocholine (PCho) was analysed in Arabidopsis seedlings. Dose-response assays with Cho or PCho revealed that both metabolites at physiological concentrations are able to induce the translational repression of a mORF located downstream of the intact uORF30, without significantly altering its mRNA levels. PCho profiles showed a correlation between increased endogenous PCho levels and translation efficiency of a uORF30-containing mORF, while no correlation was detectable with Cho levels. Enhanced expression of a uORF30-containing mORF and decreased PCho levels were observed in the xipotl1 mutant background relative to wild type, suggesting that PCho is the true mediator of uORF30-driven translational repression. In Arabidopsis, endogenous PCho content increases during plant development and affects root meristem size, cell division, and cell elongation. Because XIPOTL1 is preferentially expressed in Arabidopsis root tips, higher PCho levels are found in roots than shoots, and there is a higher sensitivity of this tissue to translational uORF30-mediated control, it is proposed that root tips are the main site for PCho biosynthesis in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Regulação da Expressão Gênica de Plantas , Metiltransferases/metabolismo , Sequência de Aminoácidos , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Colina/metabolismo , DNA de Plantas/química , DNA de Plantas/genética , Marcação In Situ das Extremidades Cortadas , Metiltransferases/química , Metiltransferases/genética , Dados de Sequência Molecular , Fases de Leitura Aberta , Fosforilcolina/metabolismo , Mutação Puntual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA