Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Small ; 20(21): e2306482, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38109123

RESUMO

Inflammatory bowel disease (IBD) has become a globally prevalent chronic disease with no causal therapeutic options. Targeted drug delivery systems with selectivity for inflamed areas in the gastrointestinal tract promise to reduce severe drug-related side effects. By creating three distinct nanostructures (vesicles, spherical, and wormlike micelles) from the same amphiphilic block copolymer poly(butyl acrylate)-block-poly(ethylene oxide) (PBA-b-PEO), the effect of nanoparticle shape on human mucosal penetration is systematically identified. An Ussing chamber technique is established to perform the ex vivo experiments on human colonic biopsies, demonstrating that the shape of polymeric nanostructures represents a rarely addressed key to tissue selectivity required for efficient IBD treatment. Wormlike micelles specifically enter inflamed mucosa from patients with IBD, but no significant uptake is observed in healthy tissue. Spheres (≈25 nm) and vesicles (≈120 nm) enter either both normal and inflamed tissue types or do not penetrate any tissue. According to quantitative image analysis, the wormlike nanoparticles localize mainly within immune cells, facilitating specific targeting, which is crucial for further increasing the efficacy of IBD treatment. These findings therefore demonstrate the untapped potential of wormlike nanoparticles not only to selectively target the inflamed human mucosa, but also to target key pro-inflammatory cells.


Assuntos
Doenças Inflamatórias Intestinais , Micelas , Polímeros , Humanos , Polímeros/química , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Nanopartículas/química , Inflamação/tratamento farmacológico , Inflamação/patologia , Sistemas de Liberação de Medicamentos
2.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34504005

RESUMO

Fungi of the genus Mortierella occur ubiquitously in soils where they play pivotal roles in carbon cycling, xenobiont degradation, and promoting plant growth. These important fungi are, however, threatened by micropredators such as fungivorous nematodes, and yet little is known about their protective tactics. We report that Mortierella verticillata NRRL 6337 harbors a bacterial endosymbiont that efficiently shields its host from nematode attacks with anthelmintic metabolites. Microscopic investigation and 16S ribosomal DNA analysis revealed that a previously overlooked bacterial symbiont belonging to the genus Mycoavidus dwells in M. verticillata hyphae. Metabolic profiling of the wild-type fungus and a symbiont-free strain obtained by antibiotic treatment as well as genome analyses revealed that highly cytotoxic macrolactones (CJ-12,950 and CJ-13,357, syn necroxime C and D), initially thought to be metabolites of the soil-inhabiting fungus, are actually biosynthesized by the endosymbiont. According to comparative genomics, the symbiont belongs to a new species (Candidatus Mycoavidus necroximicus) with 12% of its 2.2 Mb genome dedicated to natural product biosynthesis, including the modular polyketide-nonribosomal peptide synthetase for necroxime assembly. Using Caenorhabditis elegans and the fungivorous nematode Aphelenchus avenae as test strains, we show that necroximes exert highly potent anthelmintic activities. Effective host protection was demonstrated in cocultures of nematodes with symbiotic and chemically complemented aposymbiotic fungal strains. Image analysis and mathematical quantification of nematode movement enabled evaluation of the potency. Our work describes a relevant role for endofungal bacteria in protecting fungi against mycophagous nematodes.


Assuntos
Anti-Helmínticos/farmacologia , Burkholderiaceae/fisiologia , Lactonas/farmacologia , Metagenoma , Mortierella/fisiologia , Nematoides/efeitos dos fármacos , Simbiose , Animais , Genômica , Redes e Vias Metabólicas , Mortierella/efeitos dos fármacos , Nematoides/patogenicidade , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Filogenia , Microbiologia do Solo
3.
Appl Microbiol Biotechnol ; 107(2-3): 819-834, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36480041

RESUMO

Conidia of the airborne human-pathogenic fungus Aspergillus fumigatus are inhaled by humans. In the lung, they are phagocytosed by alveolar macrophages and intracellularly processed. In macrophages, however, conidia can interfere with the maturation of phagolysosomes to avoid their elimination. To investigate whether polymeric particles (PPs) can reach this intracellular pathogen in macrophages, we formulated dye-labeled PPs with a size allowing for their phagocytosis. PPs were efficiently taken up by RAW 264.7 macrophages and were found in phagolysosomes. When macrophages were infected with conidia prior to the addition of PPs, we found that they co-localized in the same phagolysosomes. Mechanistically, the fusion of phagolysosomes containing PPs with phagolysosomes containing conidia was observed. Increasing concentrations of PPs increased fusion events, resulting in 14% of phagolysosomes containing both conidia and PPs. We demonstrate that PPs can reach conidia-containing phagolysosomes, making these particles a promising carrier system for antimicrobial drugs to target intracellular pathogens. KEY POINTS: • Polymer particles of a size larger than 500 nm are internalized by macrophages and localized in phagolysosomes. • These particles can be delivered to Aspergillus fumigatus conidia-containing phagolysosomes of macrophages. • Enhanced phagolysosome fusion by the use of vacuolin1 can increase particle delivery.


Assuntos
Aspergillus fumigatus , Fagossomos , Humanos , Esporos Fúngicos , Macrófagos/microbiologia , Fagocitose
5.
Environ Microbiol ; 22(9): 3722-3740, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32583550

RESUMO

Mucormycosis is an emergent, fatal fungal infection of humans and warm-blooded animals caused by species of the order Mucorales. Immune cells of the innate immune system serve as the first line of defence against inhaled spores. Alveolar macrophages were challenged with the mucoralean fungus Lichtheimia corymbifera and subjected to biotinylation and streptavidin enrichment procedures followed by LC-MS/MS analyses. A total of 28 host proteins enriched for binding to macrophage-L. corymbifera interaction. Among those, the HSP70-family protein Hspa8 was found to be predominantly responsive to living and heat-killed spores of a virulent and an attenuated strain of L. corymbifera. Confocal scanning laser microscopy of infected macrophages revealed colocalization of Hspa8 with phagocytosed spores of L. corymbifera. The amount of detectable Hspa8 was dependent on the multiplicity of infection. Incubation of alveolar macrophages with an anti-Hspa8 antibody prior to infection reduced their capability to phagocytose spores of L. corymbifera. In contrast, anti-Hspa8 antibodies did not abrogate the phagocytosis of Aspergillus fumigatus conidia by macrophages. These results suggest an important contribution of the heat-shock family protein Hspa8 in the recognition of spores of the mucoralean fungus L. corymbifera by host alveolar macrophages and define a potential immunomodulatory therapeutic target.


Assuntos
Proteínas de Choque Térmico/metabolismo , Macrófagos Alveolares/fisiologia , Mucorales/metabolismo , Animais , Anticorpos/farmacologia , Aspergillus fumigatus , Linhagem Celular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/imunologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/microbiologia , Camundongos , Fagocitose/efeitos dos fármacos , Proteômica , Esporos Fúngicos
6.
Environ Microbiol ; 21(12): 4563-4581, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31330072

RESUMO

Mucormycoses are life-threatening infections that affect patients suffering from immune deficiencies. We performed phagocytosis assays confronting various strains of Lichtheimia species with alveolar macrophages, which form the first line of defence of the innate immune system. To investigate 17 strains from four different continents in a comparative fashion, transmitted light and confocal fluorescence microscopy was applied in combination with automated image analysis. This interdisciplinary approach enabled the objective and quantitative processing of the big volume of image data. Applying machine-learning supported methods, a spontaneous clustering of the strains was revealed in the space of phagocytic measures. This clustering was not driven by measures of fungal morphology but rather by the geographical origin of the fungal strains. Our study illustrates the crucial contribution of machine-learning supported automated image analysis to the qualitative discovery and quantitative comparison of major factors affecting host-pathogen interactions. We found that the phagocytic vulnerability of Lichtheimia species depends on their geographical origin, where strains within each geographic region behaved similarly, but strongly differed amongst the regions. Based on this clustering, we were able to also classify clinical isolates with regard to their potential geographical origin.


Assuntos
Macrófagos Alveolares/imunologia , Mucorales/imunologia , Fagocitose/imunologia , Animais , Aspergillus fumigatus/imunologia , Aspergillus fumigatus/isolamento & purificação , Células Cultivadas , Microbiologia Ambiental , Interações Hospedeiro-Patógeno , Humanos , Processamento de Imagem Assistida por Computador , Camundongos , Tipagem Molecular , Mucorales/classificação , Mucorales/isolamento & purificação , Mucormicose/imunologia , Mucormicose/microbiologia , Filogeografia
7.
J Infect Dis ; 217(3): 358-370, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28968817

RESUMO

Pneumococcal hemolytic uremic syndrome (HUS) in children is caused by infections with Streptococcus pneumoniae. Because endothelial cell damage is a hallmark of HUS, we studied how HUS-inducing pneumococci derived from infant HUS patients during the acute phase disrupt the endothelial layer. HUS pneumococci efficiently bound human plasminogen. These clinical isolates of HUS pneumococci efficiently bound human plasminogen via the bacterial surface proteins Tuf and PspC. When activated to plasmin at the bacterial surface, the active protease degraded fibrinogen and cleaved C3b. Here, we show that PspC is a pneumococcal plasminogen receptor and that plasmin generated on the surface of HUS pneumococci damages endothelial cells, causing endothelial retraction and exposure of the underlying matrix. Thus, HUS pneumococci damage endothelial cells in the blood vessels and disturb local complement homeostasis. Thereby, HUS pneumococci promote a thrombogenic state that drives HUS pathology.


Assuntos
Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Células Endoteliais/patologia , Fibrinolisina/metabolismo , Síndrome Hemolítico-Urêmica/microbiologia , Plasminogênio/metabolismo , Streptococcus pneumoniae/fisiologia , Pré-Escolar , Feminino , Humanos , Infecções Pneumocócicas/microbiologia , Ligação Proteica , Streptococcus pneumoniae/isolamento & purificação
8.
Cytometry A ; 93(3): 346-356, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28914994

RESUMO

Host-fungus interactions have gained a lot of interest in the past few decades, mainly due to an increasing number of fungal infections that are often associated with a high mortality rate in the absence of effective therapies. These interactions can be studied at the genetic level or at the functional level via imaging. Here, we introduce a new image processing method that quantifies the interaction between host cells and fungal invaders, for example, alveolar macrophages and the conidia of Aspergillus fumigatus. The new technique relies on the information content of transmitted light bright field microscopy images, utilizing the Hessian matrix eigenvalues to distinguish between unstained macrophages and the background, as well as between macrophages and fungal conidia. The performance of the new algorithm was measured by comparing the results of our method with that of an alternative approach that was based on fluorescence images from the same dataset. The comparison shows that the new algorithm performs very similarly to the fluorescence-based version. Consequently, the new algorithm is able to segment and characterize unlabeled cells, thus reducing the time and expense that would be spent on the fluorescent labeling in preparation for phagocytosis assays. By extending the proposed method to the label-free segmentation of fungal conidia, we will be able to reduce the need for fluorescence-based imaging even further. Our approach should thus help to minimize the possible side effects of fluorescence labeling on biological functions. © 2017 International Society for Advancement of Cytometry.


Assuntos
Aspergilose/patologia , Aspergillus fumigatus/imunologia , Interações Hospedeiro-Patógeno/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Macrófagos Alveolares/imunologia , Esporos Fúngicos/imunologia , Algoritmos , Animais , Aspergilose/microbiologia , Corantes Fluorescentes , Macrófagos Alveolares/microbiologia , Camundongos , Microscopia Confocal , Coloração e Rotulagem
9.
Cytometry A ; 93(3): 323-333, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29077263

RESUMO

Cells in their natural environment often exhibit complex kinetic behavior and radical adjustments of their shapes. This enables them to accommodate to short- and long-term changes in their surroundings under physiological and pathological conditions. Intravital multi-photon microscopy is a powerful tool to record this complex behavior. Traditionally, cell behavior is characterized by tracking the cells' movements, which yields numerous parameters describing the spatiotemporal characteristics of cells. Cells can be classified according to their tracking behavior using all or a subset of these kinetic parameters. This categorization can be supported by the a priori knowledge of experts. While such an approach provides an excellent starting point for analyzing complex intravital imaging data, faster methods are required for automated and unbiased characterization. In addition to their kinetic behavior, the 3D shape of these cells also provide essential clues about the cells' status and functionality. New approaches that include the study of cell shapes as well may also allow the discovery of correlations amongst the track- and shape-describing parameters. In the current study, we examine the applicability of a set of Fourier components produced by Discrete Fourier Transform (DFT) as a tool for more efficient and less biased classification of complex cell shapes. By carrying out a number of 3D-to-2D projections of surface-rendered cells, the applied method reduces the more complex 3D shape characterization to a series of 2D DFTs. The resulting shape factors are used to train a Self-Organizing Map (SOM), which provides an unbiased estimate for the best clustering of the data, thereby characterizing groups of cells according to their shape. We propose and demonstrate that such shape characterization is a powerful addition to, or a replacement for kinetic analysis. This would make it especially useful in situations where live kinetic imaging is less practical or not possible at all. © 2017 International Society for Advancement of Cytometry.


Assuntos
Movimento Celular/fisiologia , Análise de Fourier , Intestinos/citologia , Microscopia Intravital/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Células Mieloides/citologia , Algoritmos , Animais , Linhagem Celular Tumoral , Forma Celular , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Camundongos , Reconhecimento Automatizado de Padrão/métodos
10.
J Allergy Clin Immunol ; 139(1): 220-231.e8, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27461466

RESUMO

BACKGROUND: Most patients with common variable immunodeficiency (CVID) present with severely reduced switched memory B-cell counts, and some display an increase of CD21low B-cell counts (CVID 21low), whereas others do not (CVID 21norm). Altered B-cell receptor (BCR) signaling might contribute to the defective memory formation observed in patients with CVID. OBJECTIVE: We sought to investigate canonical nuclear factor of κ light chain (NF-κB) signaling in B cells from patients with CVID as a central pathway in B-cell differentiation. METHODS: Degradation of inhibitor of κBα (IκBα) and p65 phosphorylation, nuclear translocation of p65, and regulation of target genes and cell function were investigated after different modes of B-cell stimulation. RESULTS: BCR-mediated canonical NF-κB signaling was impaired in all mature naive CVID-derived B cells. This impairment was more profound in naive B cells from CVID 21low patients than CVID 21norm patients and most pronounced in CD21low B cells. The signaling defect translated into reduced induction of Bcl-xL and IκBα, 2 bona fide target genes of the canonical NF-κB pathway. CD40 ligand- and Toll-like receptor 9-mediated signaling were less strongly altered. Signaling in CD21low B cells but not CD21+ B cells of patients with HIV was similarly affected. CONCLUSION: Combined with the previous description of disturbed Ca2+ signaling, the discovery of NF-κB signaling defects, especially in CVID 21low patients, suggests a broad underlying signaling defect affecting especially BCR-derived signals. Given the immune phenotype of monogenic defects affecting Ca2+ and NF-κB signaling, the latter is more likely to contribute to the humoral deficiency. The strongly disturbed BCR signaling of CD21low B cells is characteristic for this cell type and independent of the underlying disease.


Assuntos
Linfócitos B/imunologia , Imunodeficiência de Variável Comum/imunologia , NF-kappa B/imunologia , Adulto , Idoso , Diferenciação Celular , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Receptores de Antígenos de Linfócitos B/imunologia , Receptores de Complemento 3d/imunologia , Transdução de Sinais
11.
Glia ; 64(7): 1210-26, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27143298

RESUMO

Microglial cells are critical for glioma growth and progression. However, only little is known about intratumoral microglial behavior and the dynamic interaction with the tumor. Currently the scarce understanding of microglial appearance in malignant gliomas merely originates from histological studies and in vitro investigations. In order to understand the pattern of microglia activity, motility and migration we designed an intravital study in an orthotopic murine glioma model using CX3CR1-eGFP(GFP/wt) mice. We analysed the dynamics of intratumoral microglia accumulation and activity, as well as microglia/tumor blood vessel interaction by epi-illumination and 2-photon laser scanning microscopy. We further investigated cellular and tissue function, including the enzyme activity of intratumoral and microglial NADPH oxidase measured by in vivo fluorescence lifetime imaging. We identified three morphological phenotypes of tumor-associated microglia cells with entirely different motility patterns. We found that NADPH oxidase activation is highly divergent in these microglia subtypes leading to different production levels of reactive oxygen species (ROS). We observed that microglia motility is highest within the perivascular niche, suggesting relevance of microglia/tumor blood vessel interactions. In line, reduction of tumor blood vessels by antivascular therapy confirmed the relevance of the tumor vessel compartment on microglia biology in brain tumors. In summary, we provide new insights into in vivo microglial behavior, regarding both morphology and function, in malignant gliomas. GLIA 2016;64:1210-1226.


Assuntos
Neoplasias Encefálicas/patologia , Movimento Celular/fisiologia , Glioma/patologia , Microglia/patologia , Microscopia Confocal , Animais , Neoplasias Encefálicas/diagnóstico por imagem , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Interação Gene-Ambiente , Glioma/diagnóstico por imagem , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Processamento de Imagem Assistida por Computador , Microscopia Intravital , Antígeno Ki-67/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/fisiologia , NADP/metabolismo , Neovascularização Patológica/etiologia , Neovascularização Patológica/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Eur J Immunol ; 44(8): 2306-17, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24777940

RESUMO

In the bone marrow (BM), memory plasma cells (PCs) survive for long time periods in dedicated microenvironmental survival niches, resting in terms of proliferation. Several cell types, such as eosinophils and reticular stromal cells, have been reported to contribute to the survival niche of memory PCs. However, until now it has not been demonstrated whether the niche is formed by a fixed cellular microenvironment. By intravital microscopy, we provide for the first time evidence that the direct contacts formed between PCs and reticular stromal cells are stable in vivo, and thus the PCs are sessile in their niches. The majority (∼ 80%) of PCs directly contact reticular stromal cells in a non-random fashion. The mesenchymal reticular stromal cells in contact with memory PCs are not proliferating. On the other hand, we show here that eosinophils in the vicinity of long-lived PCs are vigorously proliferating cells and represent a dynamic component of the survival niche. In contrast, if eosinophils are depleted by irradiation, newly generated eosinophils localize in the vicinity of radiation-resistant PCs and the stromal cells. These results suggest that memory PC niches may provide attraction for eosinophils to maintain stability with fluctuating yet essential accessory cells.


Assuntos
Medula Óssea/imunologia , Plasmócitos/imunologia , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Processos de Crescimento Celular/imunologia , Sobrevivência Celular/imunologia , Microambiente Celular/imunologia , Eosinófilos/imunologia , Memória Imunológica/imunologia , Camundongos , Plasmócitos/citologia
13.
mBio ; 15(3): e0019524, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38380921

RESUMO

Sphingofungins are sphinganine analog mycotoxins acting as inhibitors of serine palmitoyl transferases, enzymes responsible for the first step in the sphingolipid biosynthesis. Eukaryotic cells are highly organized with various structures and organelles to facilitate cellular processes and chemical reactions, including the ones occurring as part of the secondary metabolism. We studied how sphingofungin biosynthesis is compartmentalized in the human-pathogenic fungus Aspergillus fumigatus, and we observed that it takes place in the endoplasmic reticulum (ER), ER-derived vesicles, and the cytosol. This implies that sphingofungin and sphingolipid biosynthesis colocalize to some extent. Automated analysis of confocal microscopy images confirmed the colocalization of the fluorescent proteins. Moreover, we demonstrated that the cluster-associated aminotransferase (SphA) and 3-ketoreductase (SphF) play a bifunctional role, supporting sphingolipid biosynthesis, and thereby antagonizing the toxic effects caused by sphingofungin production.IMPORTANCEA balanced sphingolipid homeostasis is critical for the proper functioning of eukaryotic cells. To this end, sphingolipid inhibitors have therapeutic potential against diseases related to the deregulation of sphingolipid balance. In addition, some of them have significant antifungal activity, suggesting that sphingolipid inhibitors-producing fungi have evolved mechanisms to escape self-poisoning. Here, we propose a novel self-defense mechanism, with cluster-associated genes coding for enzymes that play a dual role, being involved in both sphingofungin and sphingolipid production.


Assuntos
Aspergillus fumigatus , Esfingolipídeos , Humanos , Aspergillus fumigatus/genética , Homeostase , Metabolismo dos Lipídeos , Serina/metabolismo
14.
J Biomed Mater Res A ; 111(11): 1734-1749, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37345381

RESUMO

Cryogels represent a class of porous sponge-like materials possessing unique properties including high-fidelity reproduction of tissue structure and maximized permeability. Their architecture is mainly based on an interconnected network of macropores that provides sufficient stability while allowing the movement of substances through the material. In most cryogel applications, the pore size is very important, especially when the material is used as a 3D scaffold for tissue culture, applied as a filter, or utilized as a membrane. In this study, poly(dimethylacrylamide-co-2-hydroxyethyl methacrylate) cryogels have been prepared by two preparation methods to investigate the reproducibility of homogeneous pore structures and pore sizes. Automated image analysis algorithms were developed to rapidly evaluate cryogel pore sizes based on scanning electron microscopy (SEM) images. The quantification approach contained a unique combination of classical and deep learning-based algorithms. To validate the accuracy of the two models, we compared the results obtained from automated SEM image analysis with those from manual pore size determinations and mercury intrusion porosimetry (MIP) measurements. Effect sizes were calculated to compare the results from manual and automated pore size measurements for the cryogel reproducibility series. 81% of the values obtained revealed only trivial differences, which strongly suggests that automated image analysis can reliably substitute the manual evaluation of cryogel pore sizes. The use of an adapted reactor setup yielded cryogels with heterogeneous morphologies in the absence of recognizable pore structures. With the conventional cryogel preparation using plastic syringes, the obtained cryogels represented highly reproducible morphologies and pore sizes in the range between 17 and 22 µm. Calculated effect sizes within the cryogel replicate series revealed only trivial differences between the obtained pore sizes in 83.5% or 99.4% of the data (classical approach and deep learning-based approach, respectively).


Assuntos
Criogéis , Aprendizado Profundo , Criogéis/química , Reprodutibilidade dos Testes , Porosidade , Microscopia Eletrônica de Varredura , Adsorção
15.
PLoS One ; 18(3): e0282803, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36893111

RESUMO

Correlative light and electron microscopy is a powerful tool to study the internal structure of cells. It combines the mutual benefit of correlating light (LM) and electron (EM) microscopy information. The EM images only contain contrast information. Therefore, some of the detailed structures cannot be specified from these images alone, especially when different cell organelle are contacted. However, the classical approach of overlaying LM onto EM images to assign functional to structural information is hampered by the large discrepancy in structural detail visible in the LM images. This paper aims at investigating an optimized approach which we call EM-guided deconvolution. This applies to living cells structures before fixation as well as previously fixed sample. It attempts to automatically assign fluorescence-labeled structures to structural details visible in the EM image to bridge the gaps in both resolution and specificity between the two imaging modes. We tested our approach on simulations, correlative data of multi-color beads and previously published data of biological samples.


Assuntos
Organelas , Humanos , Microscopia Eletrônica , Células HeLa
16.
mSphere ; 8(1): e0052322, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36719247

RESUMO

Alveolar macrophages belong to the first line of defense against inhaled conidia of the human-pathogenic fungus Aspergillus fumigatus. In lung alveoli, they contribute to phagocytosis and elimination of conidia. As a counterdefense, conidia have a gray-green pigment that enables them to survive in phagosomes of macrophages for some time. Previously, we showed that this conidial pigment interferes with the formation of flotillin-dependent lipid raft microdomains in the phagosomal membrane, thereby preventing the formation of functional phagolysosomes. Besides flotillins, stomatin is a major component of lipid rafts and can be targeted to the membrane. However, only limited information on stomatin is available, in particular on its role in defense against pathogens. To determine the function of this integral membrane protein, a stomatin-deficient macrophage line was generated by CRISPR/Cas9 gene editing. Immunofluorescence microscopy and flow cytometry revealed that stomatin contributes to the phagocytosis of conidia and is important for recruitment of the ß-glucan receptor dectin-1 to both the cytoplasmic membrane and phagosomal membrane. In stomatin knockout cells, fusion of phagosomes and lysosomes, recruitment of the vATPase to phagosomes, and tumor necrosis factor alpha (TNF-α) levels were reduced when cells were infected with pigmentless conidia. Thus, our data suggest that stomatin is involved in maturation of phagosomes via fostering fusion of phagosomes with lysosomes. IMPORTANCE Stomatin is an integral membrane protein that contributes to the uptake of microbes, e.g., spores of the human-pathogenic fungus Aspergillus fumigatus. By generation of a stomatin-deficient macrophage line by advanced genetic engineering, we found that stomatin is involved in the recruitment of the ß-glucan receptor dectin-1 to the phagosomal membrane of macrophages. Furthermore, stomatin is involved in maturation of phagosomes via fostering fusion of phagosomes with lysosomes. The data provide new insights on the important role of stomatin in the immune response against human-pathogenic fungi.


Assuntos
Aspergillus fumigatus , Macrófagos , Humanos , Aspergillus fumigatus/metabolismo , Macrófagos/microbiologia , Fagossomos , Proteínas de Membrana/metabolismo , Microdomínios da Membrana/metabolismo
17.
Methods Mol Biol ; 2589: 129-144, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36255622

RESUMO

Systemic administration of histone deacetylase inhibitors (HDACi), like valproic acid (VPA), is often associated with rapid drug metabolization and untargeted tissue distribution. This requires high-dose application that can lead to unintended side effects. Hence, drug carrier systems such as nanoparticles (NPs) are developed to circumvent these disadvantages by enhancing serum half-life as well as organ specificity.This chapter gives a summary of the biological characterization of HDACi-coupled NPs in vitro, including investigation of cellular uptake, biocompatibility, as well as intracellular drug release and activity. Suitable methods, opportunities, and challenges will be discussed to provide general guidelines for the analysis of HDACi drug carrier systems with a special focus on recently developed cellulose-based VPA-coupled NPs.


Assuntos
Inibidores de Histona Desacetilases , Nanopartículas , Inibidores de Histona Desacetilases/farmacologia , Ácido Valproico/farmacologia , Portadores de Fármacos , Celulose
18.
Biomaterials ; 294: 122016, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36702000

RESUMO

Targeted delivery of oligonucleotides or small molecular drugs to hepatocytes, the liver's parenchymal cells, is challenging without targeting moiety due to the highly efficient mononuclear phagocyte system (MPS) of the liver. The MPS comprises Kupffer cells and specialized sinusoidal endothelial cells, efficiently clearing nanocarriers regardless of their size and surface properties. Physiologically, this non-parenchymal shield protects hepatocytes; however, these local barriers must be overcome for drug delivery. Nanocarrier structural properties strongly influence tissue penetration, in vivo pharmacokinetics, and biodistribution profile. Here we demonstrate the in vivo biodistribution of polyplex micelles formed by polyion complexation of short interfering (si)RNA with modified poly(ethylene glycol)-block-poly(allyl glycidyl ether) (PEG-b-PAGE) diblock copolymer that carries amino moieties in the side chain. The ratio between PEG corona and siRNA complexed PAGE core of polyplex micelles was chemically varied by altering the degree of polymerization of PAGE. Applying Raman-spectroscopy and dynamic in silico modeling on the polyplex micelles, we determined the corona-core ratio (CCR) and visualized the possible micellar structure with varying CCR. The results for this model system reveal that polyplex micelles with higher CCR, i.e., better PEG coverage, exclusively accumulate and thus allow passive cell-type-specific targeting towards hepatocytes, overcoming the macrophage-rich reticuloendothelial barrier of the liver.


Assuntos
Micelas , Oligonucleotídeos , Distribuição Tecidual , Células Endoteliais , Polietilenoglicóis/química , RNA Interferente Pequeno/genética , Hepatócitos
19.
Biomater Adv ; 146: 213300, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36708684

RESUMO

The therapy of life-threatening fungal infections is limited and needs urgent improvement. This is in part due to toxic side effects of clinically used antifungal compounds or their limited delivery to fungal structures. Until today, it is a matter of debate how drugs or drug-delivery systems can efficiently reach the intracellular lumen of fungal cells and how this can be improved. Here, we addressed both questions by applying two different polymeric particles for delivery of compounds. Their formulation was based on two biocompatible polymers, i.e., poly(lactic-co-glycolic acid)50:50 and poly(methyl methacrylate-stat-methacrylic acid)90:10 yielding particles with hydrodynamic diameters ranging from 100 to 300 nm. The polymers were covalently labeled with the fluorescent dye DY-550 to monitor the interaction between particles and fungi by confocal laser scanning microscopy. Furthermore, the fluorescent dye coumarin-6 and the antifungal drug itraconazole were successfully encapsulated in particles to study the fate of both the cargo and the particle when interacting with the clinically most important human-pathogenic fungi Aspergillus fumigatus, A. terreus, Candida albicans, and Cryptococcus neoformans. While the polymers were exclusively located on the fungal surface, the encapsulated cargo was efficiently transported into fungal hyphae, indicated by increased intracellular fluorescence signals due to coumarin-6. In accordance with this finding, compared to the pristine drug a reduced minimal inhibitory concentration for itraconazole was determined, when it was encapsulated. Together, the herein used polymeric particles were not internalized by pathogenic fungi but were able to efficiently deliver hydrophobic cargos into fungal cells.


Assuntos
Antifúngicos , Itraconazol , Humanos , Antifúngicos/farmacologia , Itraconazol/farmacologia , Polímeros/farmacologia , Corantes Fluorescentes , Candida albicans
20.
Cell Host Microbe ; 31(3): 373-388.e10, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36893734

RESUMO

The decision whether endosomes enter the degradative or recycling pathway in mammalian cells is of fundamental importance for pathogen killing, and its malfunctioning has pathological consequences. We discovered that human p11 is a critical factor for this decision. The HscA protein present on the conidial surface of the human-pathogenic fungus Aspergillus fumigatus anchors p11 on conidia-containing phagosomes (PSs), excludes the PS maturation mediator Rab7, and triggers binding of exocytosis mediators Rab11 and Sec15. This reprogramming redirects PSs to the non-degradative pathway, allowing A. fumigatus to escape cells by outgrowth and expulsion as well as transfer of conidia between cells. The clinical relevance is supported by the identification of a single nucleotide polymorphism in the non-coding region of the S100A10 (p11) gene that affects mRNA and protein expression in response to A. fumigatus and is associated with protection against invasive pulmonary aspergillosis. These findings reveal the role of p11 in mediating fungal PS evasion.


Assuntos
Aspergillus fumigatus , Fagossomos , Animais , Humanos , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Endossomos , Esporos Fúngicos , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA