Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Front Oncol ; 14: 1281572, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361781

RESUMO

Objective: This study aimed to evaluate the value of 18F-FDG PET/CT radiomics in predicting EGFR gene mutations in non-small cell lung cancer by meta-analysis. Methods: The PubMed, Embase, Cochrane Library, Web of Science, and CNKI databases were searched from the earliest available date to June 30, 2023. The meta-analysis was performed using the Stata 15.0 software. The methodological quality and risk of bias of included studies were assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 and Radiomics Quality Score criteria. The possible causes of heterogeneity were analyzed by meta-regression. Results: A total of 17 studies involving 3763 non-small cell lung cancer patients were finally included. We analyzed 17 training cohorts and 10 validation cohorts independently. Within the training cohort, the application of 18F-FDG PET/CT radiomics in predicting EGFR mutations in NSCLC demonstrated a sensitivity of 0.76 (95% CI: 0.70-0.81) and a specificity of 0.78 (95% CI: 0.74-0.82), accompanied by a positive likelihood ratio of 3.5 (95% CI:3.0-4.2), a negative likelihood ratio of 0.31 (95% CI: 0.24-0.39), a diagnostic odds ratio of 11.0 (95% CI: 8.0-16.0), and an area under the curve (AUC) of 0.84 (95% CI: 0.80-0.87). In the validation cohort, the values included a sensitivity of 0.76 (95% CI: 0.67-0.83), a specificity of 0.75 (95% CI: 0.68-0.80), a positive likelihood ratio of 3.0 (95% CI:2.4-3.8), a negative likelihood ratio of 0.32 (95% CI: 0.24-0.44), a diagnostic odds ratio of 9 (95% CI: 6-15), and an AUC of 0.82 (95% CI: 0.78-0.85). The average Radiomics Quality Score (RQS) across studies was 10.47 ± 4.72. Meta-regression analysis identifies the application of deep learning and regions as sources of heterogeneity. Conclusion: 18F-FDG PET/CT radiomics may be useful in predicting mutation status of the EGFR gene in non-small cell lung cancer. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO, identifier CRD42022385364.

2.
EJNMMI Rep ; 8(1): 19, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38945980

RESUMO

BACKGROUND: This study aimed to establish radiomics models based on positron emission tomography (PET) images to longitudinally predict transition from mild cognitive impairment (MCI) to Alzheimer's disease (AD). METHODS: In our study, 278 MCI patients from the ADNI database were analyzed, where 60 transitioned to AD (pMCI) and 218 remained stable (sMCI) over 48 months. Patients were divided into a training set (n = 222) and a validation set (n = 56). We first employed voxel-based analysis of 18F-FDG PET images to identify brain regions that present significant SUV difference between pMCI and sMCI groups. Radiomic features were extracted from these regions, key features were selected, and predictive models were developed for individual and combined brain regions. The models' effectiveness was evaluated using metrics like AUC to determine the most accurate predictive model for MCI progression. RESULTS: Voxel-based analysis revealed four brain regions implicated in the progression from MCI to AD. These include ROI1 within the Temporal lobe, ROI2 and ROI3 in the Thalamus, and ROI4 in the Limbic system. Among the predictive models developed for these individual regions, the model utilizing ROI4 demonstrated superior predictive accuracy. In the training set, the AUC for the ROI4 model was 0.803 (95% CI 0.736, 0.865), and in the validation set, it achieved an AUC of 0.733 (95% CI 0.559, 0.893). Conversely, the model based on ROI3 showed the lowest performance, with an AUC of 0.75 (95% CI 0.685, 0.809). Notably, the comprehensive model encompassing all identified regions (ROI total) outperformed the single-region models, achieving an AUC of 0.884 (95% CI 0.845, 0.921) in the training set and 0.816 (95% CI 0.705, 0.909) in the validation set, indicating significantly enhanced predictive capability for MCI progression to AD. CONCLUSION: Our findings underscore the Limbic system as the brain region most closely associated with the progression from MCI to AD. Importantly, our study demonstrates that a PET brain radiomics model encompassing multiple brain regions (ROI total) significantly outperforms models based on single brain regions. This comprehensive approach more accurately identifies MCI patients at high risk of progressing to AD, offering valuable insights for non-invasive diagnostics and facilitating early and timely interventions in clinical settings.

3.
Quant Imaging Med Surg ; 13(6): 3760-3775, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37284102

RESUMO

Background: [18F] Fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) is an important tool for tumor assessment. Shortening scanning time and reducing the amount of radioactive tracer remain the most difficult challenges. Deep learning methods have provided powerful solutions, thus making it important to choose an appropriate neural network architecture. Methods: A total of 311 tumor patients who underwent 18F-FDG PET/CT were retrospectively collected. The PET collection time was 3 min/bed. The first 15 and 30 s of each bed collection time were selected to simulate low-dose collection, and the pre-90s was used as the clinical standard protocol. Low-dose PET was used as input, convolutional neural network (CNN, 3D Unet as representative) and generative adversarial network (GAN, P2P as representative) were used to predict the full-dose images. The image visual scores, noise levels and quantitative parameters of tumor tissue were compared. Results: There was high consistency in image quality scores among all groups [Kappa =0.719, 95% confidence interval (CI): 0.697-0.741, P<0.001]. There were 264 cases (3D Unet-15s), 311 cases (3D Unet-30s), 89 cases (P2P-15s) and 247 cases (P2P-30s) with image quality score ≥3, respectively. There was significant difference in the score composition among all groups (χ2=1,325.46, P<0.001). Both deep learning models reduced the standard deviation (SD) of background, and increased the signal-to-noise ratio (SNR). When 8%PET images were used as input, P2P and 3D Unet had similar enhancement effect on SNR of tumor lesions, but 3D Unet could significantly improve the contrast-noise ratio (CNR) (P<0.05). There was no significant difference in SUVmean of tumor lesions compared with s-PET group (P>0.05). When 17%PET image was used as input, SNR, CNR and SUVmax of tumor lesion of 3D Unet group had no statistical difference with those of s-PET group (P>0.05). Conclusions: Both GAN and CNN can suppress image noise to varying degrees and improve image quality. However, when 3D Unet reduces the noise of tumor lesions, it can improve the CNR of tumor lesions. Moreover, quantitative parameters of tumor tissue are similar to those under the standard acquisition protocol, which can meet the needs of clinical diagnosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA