Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Ano de publicação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 56(46): 14637-14641, 2017 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-28963739

RESUMO

As the first example of a photocatalytic system for splitting water without additional cocatalysts and photosensitizers, the comparatively cost-effective Cu2 I2 -based MOF, Cu-I-bpy (bpy=4,4'-bipyridine) exhibited highly efficient photocatalytic hydrogen production (7.09 mmol g-1 h-1 ). Density functional theory (DFT) calculations established the electronic structures of Cu-I-bpy with a narrow band gap of 2.05 eV, indicating its semiconductive behavior, which is consistent with the experimental value of 2.00 eV. The proposed mechanism demonstrates that Cu2 I2 clusters of Cu-I-bpy serve as photoelectron generators to accelerate the copper(I) hydride interaction, providing redox reaction sites for hydrogen evolution. The highly stable cocatalyst-free and self-sensitized Cu-I-bpy provides new insights into the future design of cost-effective d10 -based MOFs for highly efficient and long-term solar fuels production.

2.
Huan Jing Ke Xue ; 35(5): 1781-7, 2014 May.
Artigo em Zh | MEDLINE | ID: mdl-25055666

RESUMO

In order to study the impact of algae control mixing technology on the distribution characteristics and movement of Cyanobacteria, the floating and subsiding velocity of Cyanobacteria in Taihu Lake was measured under different conditions such as different illuminance, temperature and pressure. The Cyanobacteria showed strong propensity of floating under the illuminance from 1500 1x to 6000 1x. The Cyanobacteria particle with floating velocity of more than 0.8 cm.min-1 accounted for 58% under the illuminance of 1 500 1x. The floating velocity slowed down when the illuminance was lower than 1 500 1x or higher than 6 000 1x. In the temperature range of 8 to 25 Celsius degree, the Cyanobacteria floated and the floating velocity increased with temperature. The Cyanobacteria floated under the pressure of 0- 0. 1 MPa and the floating velocity slowed down as the pressure increased. Most Cyanobacteria were suspended in the water when the pressure reached 0. 2-0. 3 MPa and only a small part of the Cyanobacteria floated or settled. When the pressure reached 0. 4-0. 6 MPa, the Cyanobacteria notably settled and the subsiding velocity increased with the increase of pressure. The Cyanobacteria particles with subsiding velocity of more than 1.0 cm.min-1 accounted for 52.5% when the pressure was 0. 6 MPa. Gas vesicles bursted when the gas vesicles of the Cyanobacteria could not bear the external pressure. The buoyancy of the Cyanobacteria diminished until the floating force became smaller than its weight, causing the particles of the Cyanobacteria to settle. Under normal atmospheric pressure, the particle diameter was positively correlated to the floating velocity, while negatively correlated to the density. Under high pressure, the particle diameter was positively correlated to the subsiding velocity and the density.


Assuntos
Cianobactérias/citologia , Lagos/microbiologia , Movimentos da Água , China , Pressão , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA