Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 276: 116296, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593498

RESUMO

Microplastics (MPs), which are prevalent and increasingly accumulating in aquatic environments. Other pollutants coexist with MPs in the water, such as pesticides, and may be carried or transferred to aquatic organisms, posing unpredictable ecological risks. This study sought to assess the adsorption of lambda-cyhalothrin (LCT) by virgin and aged polyethylene MPs (VPE and APE, respectively), and to examine their influence on LCT's toxicity in zebrafish, specifically regarding acute toxicity, oxidative stress, gut microbiota and immunity. The adsorption results showed that VPE and APE could adsorb LCT, with adsorption capacities of 34.4 mg∙g-1 and 39.0 mg∙g-1, respectively. Compared with LCT exposure alone, VPE and APE increased the acute toxicity of LCT to zebrafish. Additionally, exposure to LCT and PE-MPs alone can induce oxidative stress in the zebrafish gut, while combined exposure can exacerbate the oxidative stress response and intensify intestinal lipid peroxidation. Moreover, exposure to LCT or PE-MPs alone promotes inflammation, and combined exposure leads to downregulation of the myd88-nf-κb related gene expression, thus impacting intestinal immunity. Furthermore, exposure to APE increased LCT toxicity to zebrafish more than VPE. Meanwhile, exposure to PE-MPs and LCT alone or in combination has the potential to affect gut microbiota function and alter the abundance and diversity of the zebrafish gut flora. Collectively, the presence of PE-MPs may affect the toxicity of pesticides in zebrafish. The findings emphasize the importance of studying the interaction between MPs and pesticides in the aquatic environment.


Assuntos
Microbioma Gastrointestinal , Microplásticos , Nitrilas , Estresse Oxidativo , Polietileno , Piretrinas , Poluentes Químicos da Água , Peixe-Zebra , Animais , Piretrinas/toxicidade , Nitrilas/toxicidade , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Polietileno/toxicidade , Adsorção
2.
Sci Total Environ ; 921: 171160, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38395170

RESUMO

The interaction between pesticides and microplastics (MPs) can lead to changes in their mode of action and biological toxicity, creating substantial uncertainty in risk assessments. Succinate dehydrogenase inhibitor (SDHI) fungicides, a common fungicide type, are widely used. However, little is known about how penthiopyrad (PTH), a member of the SDHI fungicide group, interacts with polyethylene microplastics (PE-MPs). This study primarily investigates the individual and combined effects of virgin or aged PE-MPs and penthiopyrad on zebrafish (Danio rerio), including acute toxicity, bioaccumulation, tissue pathology, enzyme activities, gut microbiota, and gene expression. Short-term exposure revealed that PE-MPs enhance the acute toxicity of penthiopyrad. Long-term exposure demonstrated that PE-MPs, to some extent, enhance the accumulation of penthiopyrad in zebrafish, leading to increased oxidative stress injury in their intestines by the 7th day. Furthermore, exposure to penthiopyrad and/or PE-MPs did not result in histopathological damage to intestinal tissue but altered the gut flora at the phylum level. Regarding gene transcription, penthiopyrad exposure significantly modified the expression of pro-inflammatory genes in the zebrafish gut, with these effects being mitigated when VPE or APE was introduced. These findings offer a novel perspective on environmental behavior and underscore the importance of assessing the combined toxicity of PE-MPs and fungicides on organisms.


Assuntos
Fungicidas Industriais , Pirazóis , Tiofenos , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Microplásticos/metabolismo , Plásticos/toxicidade , Peixe-Zebra/metabolismo , Polietileno/toxicidade , Polietileno/metabolismo , Fungicidas Industriais/toxicidade , Fungicidas Industriais/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA