Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
2.
Nat Immunol ; 21(11): 1359-1370, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32929274

RESUMO

Elucidating the mechanisms that sustain asthmatic inflammation is critical for precision therapies. We found that interleukin-6- and STAT3 transcription factor-dependent upregulation of Notch4 receptor on lung tissue regulatory T (Treg) cells is necessary for allergens and particulate matter pollutants to promote airway inflammation. Notch4 subverted Treg cells into the type 2 and type 17 helper (TH2 and TH17) effector T cells by Wnt and Hippo pathway-dependent mechanisms. Wnt activation induced growth and differentiation factor 15 expression in Treg cells, which activated group 2 innate lymphoid cells to provide a feed-forward mechanism for aggravated inflammation. Notch4, Wnt and Hippo were upregulated in circulating Treg cells of individuals with asthma as a function of disease severity, in association with reduced Treg cell-mediated suppression. Our studies thus identify Notch4-mediated immune tolerance subversion as a fundamental mechanism that licenses tissue inflammation in asthma.


Assuntos
Asma/etiologia , Asma/metabolismo , Fator 15 de Diferenciação de Crescimento/metabolismo , Receptor Notch4/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Alérgenos/imunologia , Análise de Variância , Asma/diagnóstico , Biomarcadores , Suscetibilidade a Doenças , Expressão Gênica , Via de Sinalização Hippo , Humanos , Tolerância Imunológica , Imunofenotipagem , Proteínas Serina-Treonina Quinases/metabolismo , Índice de Gravidade de Doença , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Via de Sinalização Wnt
3.
Nat Immunol ; 20(9): 1208-1219, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31384057

RESUMO

Regulatory T cells (Treg cells) deficient in the transcription factor Foxp3 lack suppressor function and manifest an effector T (Teff) cell-like phenotype. We demonstrate that Foxp3 deficiency dysregulates metabolic checkpoint kinase mammalian target of rapamycin (mTOR) complex 2 (mTORC2) signaling and gives rise to augmented aerobic glycolysis and oxidative phosphorylation. Specific deletion of the mTORC2 adaptor gene Rictor in Foxp3-deficient Treg cells ameliorated disease in a Foxo1 transcription factor-dependent manner. Rictor deficiency re-established a subset of Treg cell genetic circuits and suppressed the Teff cell-like glycolytic and respiratory programs, which contributed to immune dysregulation. Treatment of Treg cells from patients with FOXP3 deficiency with mTOR inhibitors similarly antagonized their Teff cell-like program and restored suppressive function. Thus, regulatory function can be re-established in Foxp3-deficient Treg cells by targeting their metabolic pathways, providing opportunities to restore tolerance in Treg cell disorders.


Assuntos
Reprogramação Celular/imunologia , Fatores de Transcrição Forkhead/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Linfócitos T Reguladores/imunologia , Animais , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Glicólise/fisiologia , Humanos , Masculino , Alvo Mecanístico do Complexo 2 de Rapamicina/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação Oxidativa , Transdução de Sinais , Linfócitos T Reguladores/citologia
4.
Immunity ; 54(6): 1186-1199.e7, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33915108

RESUMO

A cardinal feature of COVID-19 is lung inflammation and respiratory failure. In a prospective multi-country cohort of COVID-19 patients, we found that increased Notch4 expression on circulating regulatory T (Treg) cells was associated with disease severity, predicted mortality, and declined upon recovery. Deletion of Notch4 in Treg cells or therapy with anti-Notch4 antibodies in conventional and humanized mice normalized the dysregulated innate immunity and rescued disease morbidity and mortality induced by a synthetic analog of viral RNA or by influenza H1N1 virus. Mechanistically, Notch4 suppressed the induction by interleukin-18 of amphiregulin, a cytokine necessary for tissue repair. Protection by Notch4 inhibition was recapitulated by therapy with Amphiregulin and, reciprocally, abrogated by its antagonism. Amphiregulin declined in COVID-19 subjects as a function of disease severity and Notch4 expression. Thus, Notch4 expression on Treg cells dynamically restrains amphiregulin-dependent tissue repair to promote severe lung inflammation, with therapeutic implications for COVID-19 and related infections.


Assuntos
Interações Hospedeiro-Patógeno , Imunidade Celular , Pneumonia Viral/etiologia , Pneumonia Viral/metabolismo , Receptor Notch4/metabolismo , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Anfirregulina/farmacologia , Animais , Biomarcadores , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imuno-Histoquímica , Imunomodulação/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Vírus da Influenza A/fisiologia , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Transgênicos , Pneumonia Viral/patologia , Receptor Notch4/antagonistas & inibidores , Receptor Notch4/genética , Índice de Gravidade de Doença
5.
Immunity ; 53(6): 1202-1214.e6, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33086036

RESUMO

The mechanisms by which regulatory T (Treg) cells differentially control allergic and autoimmune responses remain unclear. We show that Treg cells in food allergy (FA) had decreased expression of transforming growth factor beta 1 (TGF-ß1) because of interleukin-4 (IL-4)- and signal transducer and activator of transciription-6 (STAT6)-dependent inhibition of Tgfb1 transcription. These changes were modeled by Treg cell-specific Tgfb1 monoallelic inactivation, which induced allergic dysregulation by impairing microbiota-dependent retinoic acid receptor-related orphan receptor gamma t (ROR-γt)+ Treg cell differentiation. This dysregulation was rescued by treatment with Clostridiales species, which upregulated Tgfb1 expression in Treg cells. Biallelic deficiency precipitated fatal autoimmunity with intense autoantibody production and dysregulated T follicular helper and B cell responses. These results identify a privileged role of Treg cell-derived TGF-ß1 in regulating allergy and autoimmunity at distinct checkpoints in a Tgfb1 gene dose- and microbiota-dependent manner.


Assuntos
Autoimunidade/imunologia , Hipersensibilidade/imunologia , Linfócitos T Reguladores/imunologia , Fator de Crescimento Transformador beta1/imunologia , Adolescente , Animais , Autoimunidade/genética , Linfócitos B/imunologia , Diferenciação Celular , Criança , Pré-Escolar , Hipersensibilidade Alimentar/imunologia , Dosagem de Genes , Humanos , Hipersensibilidade/genética , Imunoglobulina G/imunologia , Lactente , Mastócitos/imunologia , Camundongos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Células T Auxiliares Foliculares/imunologia , Linfócitos T Reguladores/metabolismo , Transcrição Gênica , Fator de Crescimento Transformador beta1/genética , Adulto Jovem
9.
J Asthma ; : 1-14, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38478043

RESUMO

Objective: In a previous study we have shown that, in the presence of interleukin (IL)-33, repeated, per-nasal challenge of murine airways with Streptococcus pneumoniae (S. pneumoniae) organisms induces human asthma-like airways inflammation. It is not clear, however, whether this effect is unique or manifest in response to other common respiratory pathogens.Methods: To explore this, airways of BALB/c mice were repeatedly challenged per-nasally with formaldehyde-inactivated bacterial bodies in the presence or absence of murine recombinant IL-33. Serum concentrations of S.pneumoniae, Moraxella catarrhalis (M.catarrhalis) and Haemophilus influenzae (H.influenzae) lysates-specific IgE were measured in patients with asthma and control subjects.Results: We showed that in the presence of IL-33, repeated, per-nasal airways exposure to the bodies of these bacteria induced airways hyperresponsiveness (AHR) in the experimental mice. This was accompanied by cellular infiltration into bronchoalveolar lavage fluid (BALF), eosinophilic infiltration and mucous hypertrophy of the lung tissue, with elevated local expression of some type 2 cytokines and elevated, specific IgG and IgE in the serum. The precise characteristics of the inflammation evoked by exposure to each bacterial species were distinguishable.Conclusions: These results suggest that in the certain circumstances, inhaled or commensal bacterial body antigens of both Gram-positive (S. pneumoniae) and Gram-negative (M. catarrhalis and H. influenzae) respiratory tract bacteria may initiate type 2 inflammation typical of asthma in the airways. In addition, we demonstrated that human asthmatic patients manifest elevated serum concentrations of M.catarrhalis- and H.influenzae-specific IgE.

10.
COPD ; 21(1): 2322605, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38591165

RESUMO

Chronic obstructive pulmonary disease (COPD) is a chronic respiratory condition characterized by persistent inflammation and oxidative stress, which ultimately leads to progressive restriction of airflow. Extensive research findings have cogently suggested that the dysregulation of essential transition metal ions, notably iron, copper, and zinc, stands as a critical nexus in the perpetuation of inflammatory processes and oxidative damage within the lungs of COPD patients. Unraveling the intricate interplay between metal homeostasis, oxidative stress, and inflammatory signaling is of paramount importance in unraveling the intricacies of COPD pathogenesis. This comprehensive review aims to examine the current literature on the sources, regulation, and mechanisms by which metal dyshomeostasis contributes to COPD progression. We specifically focus on iron, copper, and zinc, given their well-characterized roles in orchestrating cytokine production, immune cell function, antioxidant depletion, and matrix remodeling. Despite the limited number of clinical trials investigating metal modulation in COPD, the advent of emerging methodologies tailored to monitor metal fluxes and gauge responses to chelation and supplementation hold great promise in unlocking the potential of metal-based interventions. We conclude that targeted restoration of metal homeostasis represents a promising frontier for ameliorating pathological processes driving COPD progression.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Humanos , Cobre/uso terapêutico , Pulmão , Estresse Oxidativo , Ferro/uso terapêutico , Zinco/uso terapêutico
12.
PLoS Pathog ; 17(3): e1009401, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33720974

RESUMO

The cytosolic DNA sensor cyclic GMP-AMP (cGAMP) synthetase (cGAS) has emerged as a fundamental component fueling the anti-pathogen immunity. Because of its pivotal role in initiating innate immune response, the activity of cGAS must be tightly fine-tuned to maintain immune homeostasis in antiviral response. Here, we reported that neddylation modification was indispensable for appropriate cGAS-STING signaling activation. Blocking neddylation pathway using neddylation inhibitor MLN4924 substantially impaired the induction of type I interferon and proinflammatory cytokines, which was selectively dependent on Nedd8 E2 enzyme Ube2m. We further found that deficiency of the Nedd8 E3 ligase Rnf111 greatly attenuated DNA-triggered cGAS activation while not affecting cGAMP induced activation of STING, demonstrating that Rnf111 was the Nedd8 E3 ligase of cGAS. By performing mass spectrometry, we identified Lys231 and Lys421 as essential neddylation sites in human cGAS. Mechanistically, Rnf111 interacted with and polyneddylated cGAS, which in turn promoted its dimerization and enhanced the DNA-binding ability, leading to proper cGAS-STING pathway activation. In the same line, the Ube2m or Rnf111 deficiency mice exhibited severe defects in innate immune response and were susceptible to HSV-1 infection. Collectively, our study uncovered a vital role of the Ube2m-Rnf111 neddylation axis in promoting the activity of the cGAS-STING pathway and highlighted the importance of neddylation modification in antiviral defense.


Assuntos
Imunidade Inata/imunologia , Nucleotidiltransferases/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Viroses/imunologia , Animais , Humanos , Camundongos , Processamento de Proteína Pós-Traducional , Transdução de Sinais/imunologia
13.
Cell Immunol ; 391-392: 104759, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37689011

RESUMO

BACKGROUND: Asthma is a common chronic respiratory disease characterized by airways inflammation, hyperresponsiveness and remodeling. IL-37, an anti-inflammatory cytokine, consists of five splice isoforms, that is, a-e. Although it has been previously shown that recombinant human IL-37b is able to inhibit airway inflammation and hyperresponsiveness in animal models of asthma, the effects and difference of other IL-37 isoforms, such as IL-37a on features of asthma are unknown. METHODS: Animal models of chronic asthma were established using IL-37a and IL-37b transgenic mice with C57BL/6J background and wild-type (WT) mice sensitized and nasally challenged with ovalbumin (OVA). Airway hyperresponsiveness was measured using FlexiVent apparatus, while histological and immunohistological stainings were employed to measure airways inflammation and remodeling indexes, including goblet cell metaplasia, mucus production, deposition of collagen, hypertrophy of airway smooth muscles and pulmonary angiogenesis. RESULTS: Compared to WT mice, both IL-37a and IL-37b transgenic mice had significant reduced airway hyperresponsiveness and the declined total numbers of inflammatory cells, predominant eosinophils into airways and lung tissues. Furthermore, all features of airways remodeling, including degrees of mucus expression, collagen deposition, hypertrophy of smooth muscles, thickness of airways and neovascularization markedly decreased in IL-37 transgenic mice compared with OVA-treated WT mice. CONCLUSION: Our data suggest that both IL-37a and IL-37b isoforms are able to not only ameliorate airways inflammation and airways hyperresponsiveness, but also greatly reduce airways structural changes of animal models of chronic asthma.


Assuntos
Asma , Hipersensibilidade Respiratória , Camundongos , Humanos , Animais , Ovalbumina , Camundongos Transgênicos , Camundongos Endogâmicos C57BL , Asma/metabolismo , Pulmão/metabolismo , Inflamação/patologia , Hipersensibilidade Respiratória/metabolismo , Hipersensibilidade Respiratória/patologia , Colágeno/efeitos adversos , Colágeno/metabolismo , Hipertrofia/metabolismo , Hipertrofia/patologia , Isoformas de Proteínas , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C , Líquido da Lavagem Broncoalveolar
14.
Immunity ; 41(6): 919-33, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25526307

RESUMO

Stimulator of interferon genes (STING, also known as MITA, ERIS, or MPYS) is essential for host immune responses triggered by microbial DNAs. However, the regulatory mechanisms underlying STING-mediated signaling are not fully understood. We report here that, upon cytoplasmic DNA stimulation, the endoplasmic reticulum (ER) protein AMFR was recruited to and interacted with STING in an insulin-induced gene 1 (INSIG1)-dependent manner. AMFR and INSIG1, an E3 ubiquitin ligase complex, then catalyzed the K27-linked polyubiquitination of STING. This modification served as an anchoring platform for recruiting TANK-binding kinase 1 (TBK1) and facilitating its translocation to the perinuclear microsomes. Depletion of AMFR or INSIG1 impaired STING-mediated antiviral gene induction. Consistently, myeloid-cell-specific Insig1(-/-) mice were more susceptible to herpes simplex virus 1 (HSV-1) infection than wild-type mice. This study uncovers an essential role of the ER proteins AMFR and INSIG1 in innate immunity, revealing an important missing link in the STING signaling pathway.


Assuntos
Retículo Endoplasmático/metabolismo , Herpes Simples/imunologia , Herpesvirus Humano 1/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Microssomos/metabolismo , Células Mieloides/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Receptores do Fator Autócrino de Motilidade/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Células Cultivadas , Ativação Enzimática/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Células Mieloides/virologia , Ligação Proteica/genética , Transporte Proteico/genética , Transdução de Sinais , Ubiquitinação/genética
15.
Lung ; 201(6): 591-601, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37934242

RESUMO

PURPOSE: Acute rejection is a frequent complication among lung transplant recipients and poses substantial therapeutic challenges. 15-hydroxyprostaglandin dehydrogenase (15-PGDH), an enzyme responsible for the inactivation of prostaglandin E2 (PGE2), has recently been implicated in inflammatory lung diseases. However, the role of 15-PGDH in lung transplantation rejection remains elusive. The present study was undertaken to examine the expression of 15-PGDH in rejected lung allografts and whether inhibition of 15-PGDH ameliorates acute lung allograft rejection. METHODS: Orthotopic mouse lung transplantations were performed between donor and recipient mice of the same strain or allogeneic mismatched pairs. The expression of 15-PGDH in mouse lung grafts was measured. The efficacy of a selective 15-PGDH inhibitor (SW033291) in ameliorating acute rejection was assessed through histopathological examination, micro-CT imaging, and pulmonary function tests. Additionally, the mechanism underlying the effects of SW033291 treatment was explored using CD8+ T cells isolated from mouse lung allografts. RESULTS: Increased 15-PGDH expression was observed in rejected allografts and allogeneic CD8+ T cells. Treatment with SW033291 led to an accumulation of PGE2, modulation of CD8+ T-cell responses and mitochondrial activity, and improved allograft function and survival. CONCLUSION: Our study provides new insights into the role of 15-PGDH in acute lung rejection and highlights the therapeutic potential of inhibiting 15-PGDH for enhancing graft survival. The accumulation of PGE2 and modulation of CD8+ T-cell responses represent potential mechanisms underlying the benefits of 15-PGDH inhibition in this model. Our findings provide impetus for further exploring 15-PGDH as a target for improving lung transplantation outcomes.


Assuntos
Dinoprostona , Prostaglandinas , Camundongos , Animais , Prostaglandinas/metabolismo , Prostaglandinas/farmacologia , Dinoprostona/metabolismo , Dinoprostona/farmacologia , Linfócitos T CD8-Positivos , Pulmão/patologia , Rejeição de Enxerto/prevenção & controle , Aloenxertos/metabolismo , Camundongos Endogâmicos C57BL
16.
Plant Dis ; 107(8): 2417-2423, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36691280

RESUMO

Fusarium crown rot (FCR), caused by Fusarium pseudograminearum, is one of the most important diseases impacting wheat production in the Huanghuai region, the most important wheat-growing region of China. The current study found that the SDHI fungicide pydiflumetofen, which was recently developed by Syngenta Crop Protection, provided effective control of 67 wild-type F. pseudograminearum isolates in potato dextrose agar, with an average EC50 value of 0.060 ± 0.0098 µg/ml (SE). Further investigation revealed that the risk of fungicide resistance in pydiflumetofen was medium to high. Four F. pseudograminearum mutants generated by repeated exposure to pydiflumetofen under laboratory conditions indicated that pydiflumetofen resistance was associated with fitness penalties. Mutants exhibited significantly (P < 0.05) reduced sporulation in mung bean broth and significantly (P < 0.05) reduced pathogenicity in wheat seedlings. Sequence analysis indicated that the observed pydiflumetofen resistance of the mutants was likely associated with amino acid changes in the different subunits of the succinate dehydrogenase target protein, including R18L and V160M substitutions in the FpSdhA sequence; D69V, D147G, and C257R in FpSdhB; and W78R in FpSdhC. This study found no evidence of cross-resistance between pydiflumetofen and the alternative fungicides tebuconazole, fludioxonil, carbendazim, or fluazinam, which all have distinct modes of action and could therefore be used in combination or rotation with pydiflumetofen to reduce the risk of resistance emerging in the field. Taken together, these results indicate that pydiflumetofen has potential as a novel fungicide for the control of FCR caused by F. pseudograminearum and could therefore be of great significance in ensuring high and stable wheat yields in China.


Assuntos
Fungicidas Industriais , Fusarium , Fusarium/genética , Doenças das Plantas , China , Fungicidas Industriais/farmacologia , Triticum
17.
Cell Immunol ; 376: 104536, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35594699

RESUMO

Respiratory tract infection early in life plays a significant role in the pathogenesis of asthma. In the present study we examine, using a murine surrogate, the effects of early life respiratory infection with Streptococcus pneumoniae (SP) on adult asthma induced by sensitisation and exposure to house dust mite (HDM) allergen. Mice (one week old) were infected with SP, then 3 weeks later sensitised to HDM emulsified with Al (OH)3 intraperitoneally and challenged intranasally with same allergen for up to a further 5 weeks to establish the asthma surrogate. Outcome measures were quantified using the FlexiVent apparatus, histology and immunohistology, ELISA and flow cytometry. The murine surrogates of asthma infected with SP early in life exhibited significantly more severe disease compared with the controls of mice without SP infection, as shown by airways responsiveness, inflammatory cellular infiltration of the airways, expression of markers of airways remodelling, serum concentrations of HDM-specific IgE and the concentrations of Th2-type cytokines and the numbers of activated Th2 and ILC2 cells in the lung tissues. These data are compatible with the hypothesis that early-life infection of the airways with SP exacerbates, at least in some individuals, subsequent HDM-induced allergic airways inflammation and associated asthma in adulthood in this murine surrogate.


Assuntos
Asma , Pyroglyphidae , Alérgenos , Animais , Antígenos de Dermatophagoides , Asma/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Imunidade Inata , Pulmão , Linfócitos/metabolismo , Camundongos , Streptococcus pneumoniae/metabolismo , Células Th2
18.
Plant Dis ; 106(8): 2138-2144, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35100030

RESUMO

Fusarium crown rot (FCR), which is caused by Fusarium pseudograminearum, is one of the most important diseases affecting wheat production in the Huanghuai wheat-growing region of China. Although the phenylpyrrole fungicide fludioxonil is known to have a broad-spectrum activity against a wide range of plant pathogens, including F. pseudograminearum, it has not yet been registered for the control of FCR in China, and further research is needed to assess the biological characteristics and molecular mechanisms associated with fludioxonil resistance, and especially the potential for highly resistant isolates to emerge. The current study demonstrated that the baseline fludioxonil sensitivity of 61 F. pseudograminearum isolates collected from the Henan province of China during the summers of 2019 to 2021 conformed to a unimodal distribution with a mean effective concentration for 50% inhibition (EC50) value of 0.021 ± 0.003 µg/ml, which indicated that none of the isolates exhibited natural resistance to fludioxonil. Nevertheless, four fludioxonil-resistant mutants were attained after repeated exposure to fludioxonil under laboratory conditions. All resistant mutants exhibited significantly lower growth rates on potato dextrose agar (PDA) and lower levels of sporulation and pathogenicity in wheat seedlings. In addition, the resistant mutants also exhibited less growth on PDA amended with either 0.5 M mannitol, 0.5 M glucose, 0.5 M MgCl2, or 0.5 M NaCl, which indicated that they had greater sensitivity to osmotic stress. Molecular analysis of the proposed fludioxonil target protein FpOs1 indicated that the predicted sequences of the resistant mutants contained none of the characteristic amino acid changes previously associated with fludioxonil resistance in other species. Further investigation via quantitative real-time PCR analysis revealed that expression of the FpOs1 gene was significantly altered in the resistant mutants in both the absence and presence of fludioxonil. Meanwhile, plate assays found evidence of cross-resistance between fludioxonil and cyprodinil, as well as with the triazole fungicides tebuconazole and difenoconazole, but not with other commonly used fungicides including prochloraz, fluazinam, and carbendazim. Taken together, these results provide new insights into the mechanism and biological characteristics associated with fludioxonil resistance in F. pseudograminearum and indicate that fludioxonil could provide effective and sustained control of FCR during wheat production.


Assuntos
Fungicidas Industriais , Fusarium , Dioxóis/farmacologia , Fungicidas Industriais/farmacologia , Fusarium/genética , Pirróis , Triticum
19.
Thorax ; 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33589512

RESUMO

BACKGROUND: Efficient therapy and potential prophylaxis are confounded by current ignorance of the pathogenesis of airway remodelling and blockade in COPD. OBJECTIVE: To explore the role of the IL-33/ST2 axis in cigarette smoke (CS) exposure-induced airways remodelling. METHODS: C57BL/6, BALB/c and IL-1RL1 -/- mice exposed to CS were used to establish an animal surrogate of COPD (air-exposed=5~8, CS-exposed=6~12). Hallmarks of remodelling were measured in mice. Cigarette smoke extract (CSE)-induced proliferation and protein production in vitro by fibroblasts in the presence of anti-interleukin-33 (anti-IL-33) or hST2 antibodies were measured. Expression of IL-33 and ST2 and other remodelling hallmarks were measured, respectively, in bronchoalveolar lavage fluid (BALF) (controls=20, COPD=20), serum (controls=59, COPD=90) and lung tissue sections (controls=11, COPD=7) from patients with COPD and controls. RESULTS: Wild-type mice exposed to CS elevated expression of hallmarks of tissue remodelling in the lungs and also in the heart, spleen and kidneys, which were significantly abrogated in the IL-1RL1 -/- mice. Fibroblasts exposed to CSE, compared with control, exhibited early cellular translocation of IL-33, accompanied by proliferation and elevated protein synthesis, all inhabitable by blockade of IL-33/ST2 signalling. Expression of IL-33 and ST2 and hallmarks of tissue remodelling were significantly and proportionally elevated in BALF, serum and tissue samples from patients with COPD. CONCLUSIONS: Exposure to CS induces remodelling changes in multiple organs. The data support the hypothesis that CS-induced lung collagen deposition is at least partly a result of CS-induced IL-33 translocation and release from local fibroblasts.

20.
Cell Immunol ; 369: 104438, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34530343

RESUMO

While environmental aeroallergens and epithelial alarmins such as IL-33 are firmly implicated in asthma, the possible role of Streptococcus pneumoniae (S. pneumoniae) antigens is less clear. To explore this, wild-type BALB/c mice were repeatedly challenged per-nasally with IL-33 and inactivated S. pneumoniae, either agent alone or diluent control. Some animals were rested then later re-challenged with inactivated S. pneumoniae alone. Serum concentrations of S. pneumoniae lysates-specific IgE were measured in patients with asthma and control subjects. Interestingly, in the presence of IL-33, repeated exposure to inactivated S. pneumoniae induced asthma-like pathological changes accompanied by a systemic adaptive immune response. Subsequent re-exposure of the sensitized animals to inactivated S. pneumoniae alone was able to induce such changes. The concentration of S. pneumoniae lysates-specific IgE was significantly elevated in the asthma patients. These data suggest that antigens derived from infectious microorganisms may participate in generating the mucosal inflammation which characterizes asthma.


Assuntos
Antígenos de Bactérias/imunologia , Asma/imunologia , Hiper-Reatividade Brônquica/imunologia , Interleucina-33/imunologia , Streptococcus pneumoniae/imunologia , Animais , Feminino , Imunoglobulina E , Camundongos , Camundongos Endogâmicos BALB C , Infecções Pneumocócicas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA