Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 112(38): E5336-42, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26351691

RESUMO

Copper is both an essential nutrient and potentially toxic metal, and during infection the host can exploit Cu in the control of pathogen growth. Here we describe a clever adaptation to Cu taken by the human fungal pathogen Candida albicans. In laboratory cultures with abundant Cu, C. albicans expresses a Cu-requiring form of superoxide dismutase (Sod1) in the cytosol; but when Cu levels decline, cells switch to an alternative Mn-requiring Sod3. This toggling between Cu- and Mn-SODs is controlled by the Cu-sensing regulator Mac1 and ensures that C. albicans maintains constant SOD activity for cytosolic antioxidant protection despite fluctuating Cu. This response to Cu is initiated during C. albicans invasion of the host where the yeast is exposed to wide variations in Cu. In a murine model of disseminated candidiasis, serum Cu was seen to progressively rise over the course of infection, but this heightened Cu response was not mirrored in host tissue. The kidney that serves as the major site of fungal infection showed an initial rise in Cu, followed by a decline in the metal. C. albicans adjusted its cytosolic SODs accordingly and expressed Cu-Sod1 at early stages of infection, followed by induction of Mn-Sod3 and increases in expression of CTR1 for Cu uptake. Together, these studies demonstrate that fungal infection triggers marked fluctuations in host Cu and C. albicans readily adapts by modulating Cu uptake and by exchanging metal cofactors for antioxidant SODs.


Assuntos
Candida albicans/fisiologia , Candidíase/microbiologia , Cobre/química , Metais/química , Superóxido Dismutase/metabolismo , Animais , Antioxidantes/química , Cobre/sangue , Feminino , Engenharia Genética , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Regiões Promotoras Genéticas , Superóxido Dismutase-1
2.
Proc Natl Acad Sci U S A ; 111(16): 5866-71, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24711423

RESUMO

The human fungal pathogens Candida albicans and Histoplasma capsulatum have been reported to protect against the oxidative burst of host innate immune cells using a family of extracellular proteins with similarity to Cu/Zn superoxide dismutase 1 (SOD1). We report here that these molecules are widespread throughout fungi and deviate from canonical SOD1 at the primary, tertiary, and quaternary levels. The structure of C. albicans SOD5 reveals that although the ß-barrel of Cu/Zn SODs is largely preserved, SOD5 is a monomeric copper protein that lacks a zinc-binding site and is missing the electrostatic loop element proposed to promote catalysis through superoxide guidance. Without an electrostatic loop, the copper site of SOD5 is not recessed and is readily accessible to bulk solvent. Despite these structural deviations, SOD5 has the capacity to disproportionate superoxide with kinetics that approach diffusion limits, similar to those of canonical SOD1. In cultures of C. albicans, SOD5 is secreted in a disulfide-oxidized form and apo-pools of secreted SOD5 can readily capture extracellular copper for rapid induction of enzyme activity. We suggest that the unusual attributes of SOD5-like fungal proteins, including the absence of zinc and an open active site that readily captures extracellular copper, make these SODs well suited to meet challenges in zinc and copper availability at the host-pathogen interface.


Assuntos
Candida albicans/enzimologia , Candida albicans/imunologia , Cobre/metabolismo , Superóxido Dismutase/metabolismo , Sequência de Aminoácidos , Espaço Extracelular/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Radiólise de Impulso , Análise de Sequência de Proteína , Homologia Estrutural de Proteína , Superóxido Dismutase/química
3.
Biochim Biophys Acta ; 1763(7): 747-58, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16828895

RESUMO

Superoxide dismutases (SOD) are important anti-oxidant enzymes that guard against superoxide toxicity. Various SOD enzymes have been characterized that employ either a copper, manganese, iron or nickel co-factor to carry out the disproportionation of superoxide. This review focuses on the copper and manganese forms, with particular emphasis on how the metal is inserted in vivo into the active site of SOD. Copper and manganese SODs diverge greatly in sequence and also in the metal insertion process. The intracellular copper SODs of eukaryotes (SOD1) can obtain copper post-translationally, by way of interactions with the CCS copper chaperone. CCS also oxidizes an intrasubunit disulfide in SOD1. Adventitious oxidation of the disulfide can lead to gross misfolding of immature forms of SOD1, particularly with SOD1 mutants linked to amyotrophic lateral sclerosis. In the case of mitochondrial MnSOD of eukaryotes (SOD2), metal insertion cannot occur post-translationally, but requires new synthesis and mitochondrial import of the SOD2 polypeptide. SOD2 can also bind iron in vivo, but is inactive with iron. Such metal ion mis-incorporation with SOD2 can become prevalent upon disruption of mitochondrial metal homeostasis. Accurate and regulated metallation of copper and manganese SOD molecules is vital to cell survival in an oxygenated environment.


Assuntos
Superóxido Dismutase/metabolismo , Ativação Enzimática , Ferro/metabolismo , Oxirredução , Ligação Proteica , Conformação Proteica , Frações Subcelulares/enzimologia , Superóxido Dismutase/química
4.
J Mol Biol ; 318(2): 251-60, 2002 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-12051835

RESUMO

Saccharomyces cerevisiae expresses two distinct iron transport systems under aerobic and anaerobic conditions. The high affinity transporters, Ftr1p and Fet3p, are primarily expressed in oxygenated cultures, whereas anaerobic conditions induce the low affinity iron transporter, Fet4p. The oxygen regulation of FET4 was found to involve the Rox1p transcriptional repressor. The physiological significance of this control by Rox1p is twofold. First, FET4 repression by Rox1p under oxygenated conditions helps minimize metal toxicity. Sensitivity towards cadmium was high in either anaerobically grown wild-type yeast or in oxygenated rox1Delta strains, and in both cases cadmium toxicity was reversed by FET4 mutations. Secondly, the loss of Rox1p repression under anaerobic conditions serves to induce FET4 and facilitate continual accumulation of iron. We noted that fet4 mutants accumulate lower levels of iron under anaerobic conditions. Regulation of FET4 was examined using FET4-lacZ reporters. We found that FET4 contains a complex promoter regulated both by oxygen and iron status. The region surrounding approximately -960 to -490 contains two consensus Rox1p binding sites and mediates Rox1p, but not iron control of FET4. Sequences downstream of -490 harbor a consensus binding site for the iron regulatory factor Aft1p that is essential for iron regulation in wild-type strains. In addition, a secondary mode of iron regulation becomes evident in strains lacking AFT1. The induction by iron limitation in conjunction with low oxygen is more than additive, suggesting that these activities are synergistic. Fet4p is not the only metal transporter that is negatively regulated by oxygen; we find that Rox1p also represses S. cerevisiae SMF3, proposed to function in vacuolar iron transport. This oxygen control of iron transporter gene expression is part of an adaptation response to changes in the redox state of transition metals.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ligação ao Ferro , Ferro/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Anaerobiose , Cádmio/farmacologia , Proteínas de Transporte/genética , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Proteínas de Transporte de Cobre , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Genes Reporter , Óperon Lac , Proteínas de Membrana/genética , Mutação , Oxigênio/metabolismo , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
J Biol Chem ; 280(50): 41373-9, 2005 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-16234242

RESUMO

Reactive oxygen species are produced as the direct result of aerobic metabolism and can cause damage to DNA, proteins, and lipids. A principal defense against reactive oxygen species involves the superoxide dismutases (SOD) that act to detoxify superoxide anions. Activation of CuZn-SODs in eukaryotic cells occurs post-translationally and is generally dependent on the copper chaperone for SOD1 (CCS), which inserts the catalytic copper cofactor and catalyzes the oxidation of a conserved disulfide bond that is essential for activity. In contrast to other eukaryotes, the nematode Caenorhabditis elegans does not contain an obvious CCS homologue, and we have found that the C. elegans intracellular CuZn-SODs (wSOD-1 and wSOD-5) are not dependent on CCS for activation when expressed in Saccharomyces cerevisiae. CCS-independent activation of CuZn-SODs is not unique to C. elegans; however, this is the first organism identified that appears to exclusively use this alternative pathway. As was found for mammalian SOD1, wSOD-1 exhibits a requirement for reduced glutathione in CCS-independent activation. Unexpectedly, wSOD-1 was inactive even in the presence of CCS when glutathione was depleted. Our investigation of the cysteine residues that form the disulfide bond in wSOD-1 suggests that the ability of wSODs to readily form this disulfide bond may be the key to obtaining high levels of activation through the CCS-independent pathway. Overall, these studies demonstrate that the CuZn-SODs of C. elegans have uniquely evolved to acquire copper without the copper chaperone and this may reflect the lifestyle of this organism.


Assuntos
Chaperonas Moleculares/fisiologia , Superóxido Dismutase/metabolismo , Sequência de Aminoácidos , Animais , Caenorhabditis elegans , Linhagem Celular , Cobre/química , Dimerização , Dissulfetos/química , Ativação Enzimática , Escherichia coli/metabolismo , Proteínas Fúngicas/química , Glutationa/química , Glutationa/metabolismo , Humanos , Chaperonas Moleculares/química , Dados de Sequência Molecular , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Espécies Reativas de Oxigênio , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos
7.
J Biol Chem ; 280(24): 22715-20, 2005 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-15851472

RESUMO

Manganese-dependent superoxide dismutase 2 (SOD2) in the mitochondria plays a key role in protection against oxidative stress. Here we probed the pathway by which SOD2 acquires its manganese catalytic cofactor. We found that a mitochondrial localization is essential. A cytosolic version of Saccharomyces cerevisiae Sod2p is largely apo for manganese and is only efficiently activated when cells accumulate toxic levels of manganese. Furthermore, Candida albicans naturally produces a cytosolic manganese SOD (Ca SOD3), yet when expressed in the cytosol of S. cerevisiae, a large fraction of Ca SOD3 also remained manganese-deficient. The cytosol of S. cerevisae cannot readily support activation of Mn-SOD molecules. By monitoring the kinetics for metalation of S. cerevisiae Sod2p in vivo, we found that prefolded Sod2p in the mitochondria cannot be activated by manganese. Manganese insertion is only possible with a newly synthesized polypeptide. Furthermore, Sod2p synthesis appears closely coupled to Sod2p import. By reversibly blocking mitochondrial import in vivo, we noted that newly synthesized Sod2p can enter mitochondria but not a Sod2p polypeptide that was allowed to accumulate in the cytosol. We propose a model in which the insertion of manganese into eukaryotic SOD2 molecules is driven by the protein unfolding process associated with mitochondrial import.


Assuntos
Manganês/metabolismo , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/enzimologia , Superóxido Dismutase/metabolismo , Sequência de Aminoácidos , Candida albicans/enzimologia , Citosol/metabolismo , Ativação Enzimática , Escherichia coli/metabolismo , Humanos , Cinética , Manganês/química , Modelos Biológicos , Dados de Sequência Molecular , Estresse Oxidativo , Peptídeos/química , Plasmídeos/metabolismo , Desnaturação Proteica , Dobramento de Proteína , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae/metabolismo , Fatores de Tempo
8.
Proc Natl Acad Sci U S A ; 100(18): 10353-7, 2003 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-12890866

RESUMO

Manganese-containing superoxide dismutase (SOD2) plays a critical role in guarding against mitochondrial oxidative stress and is essential for survival of many organisms. Despite the recognized importance of SOD2, nothing is known regarding the mechanisms by which this nuclear-encoded protein is converted to an active enzyme in the mitochondrial matrix. To search for factors that participate in the posttranslational activation of SOD2, we screened for yeast genes that when mutated lead to SOD2 inactivation and identified a single ORF, YGR257c. The encoded protein localizes to the mitochondria and represents a member of the yeast mitochondrial carrier family. YGR257c was previously recognized as the homologue to human CGI-69, a widely expressed mitochondrial carrier family of unknown function. Our studies suggest a connection with SOD2, and we have named the yeast gene MTM1 for manganese trafficking factor for mitochondrial SOD2. Inactivation of yeast MTM1 leads to loss of SOD2 activity that is restored only when cells are treated with high supplements of manganese, but not other heavy metals, indicative of manganese deficiency in the SOD2 polypeptide. Surprisingly, the mitochondrial organelle of mtm1 Delta mutants shows no deficiency in manganese levels. Moreover, mtm1 Delta mutations do not impair activity of a cytosolic version of manganese SOD. We propose that Mtm1p functions in the mitochondrial activation of SOD2 by specifically facilitating insertion of the essential manganese cofactor.


Assuntos
Manganês/farmacologia , Proteínas Mitocondriais/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/enzimologia , Superóxido Dismutase/fisiologia , Ativação Enzimática , Mitocôndrias/enzimologia
9.
J Biol Chem ; 278(43): 42036-40, 2003 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-12923174

RESUMO

In the bakers' yeast Saccharomyces cerevisiae, high affinity manganese uptake and intracellular distribution involve two members of the Nramp family of genes, SMF1 and SMF2. In a search for other genes involved in manganese homeostasis, PHO84 was identified. The PHO84 gene encodes a high affinity inorganic phosphate transporter, and we find that its disruption results in a manganese-resistant phenotype. Resistance to zinc, cobalt, and copper ions was also demonstrated for pho84Delta yeast. When challenged with high concentrations of metals, pho84Delta yeast have reduced metal ion accumulation, suggesting that resistance is due to reduced uptake of metal ions. Pho84p accounted for virtually all the manganese accumulated under metal surplus conditions, demonstrating that this transporter is the major source of excess manganese accumulation. The manganese taken in via Pho84p is indeed biologically active and can not only cause toxicity but can also be incorporated into manganese-requiring enzymes. Pho84p is essential for activating manganese enzymes in smf2Delta mutants that rely on low affinity manganese transport systems. A role for Pho84p in manganese accumulation was also identified in a standard laboratory growth medium when high affinity manganese uptake is active. Under these conditions, cells lacking both Pho84p and the high affinity Smf1p transporter accumulated low levels of manganese, although there was no major effect on activity of manganese-requiring enzymes. We conclude that Pho84p plays a role in manganese homeostasis predominantly under manganese surplus conditions and appears to be functioning as a low affinity metal transporter.


Assuntos
Proteínas de Transporte de Cátions , Homeostase/genética , Manganês/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Simportadores de Próton-Fosfato/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Transporte de Íons , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Metais Pesados/metabolismo , Proteínas de Transporte de Fosfato/genética , Simportadores de Próton-Fosfato/genética , Proteínas de Saccharomyces cerevisiae/genética
10.
Biochem J ; 362(Pt 1): 119-24, 2002 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-11829747

RESUMO

The bakers yeast Saccharomyces cerevisiae expresses three Smf metal transport proteins that are differentially regulated by metal ions. Smf1p and Smf2p are regulated at the post-translational level by manganese, whereas Smf3p is regulated by iron through a mechanism that, up until now, was unknown. Through promoter and protein-domain swapping experiments, we now demonstrate that the manganese regulation of Smf1p involves an internal protein-coding region that is separate from the N-terminal domain of this transporter. By comparison, iron regulation of Smf3p involves the upstream non-coding region of the gene. Using SMF3-lacZ reporter constructs, we identified two distinct regions of the SMF3 promoter that contribute to iron regulation: (1) approx. nt -435 to -350 that contain dual consensus recognition sites for the Aft1 iron transcription factor; and (2) nt -348 to -247 that do not contain obvious Aft1 binding sites. The -348 to -247 region by itself can confer strong iron regulation to the heterologous CYC1 core promoter, and therefore harbours a putative upstream activating sequence for iron. Iron regulation of SMF3 was dramatically reduced, but not completely eliminated, in strains lacking both the AFT1 and AFT2 iron regulatory factors. Together with the promoter mapping studies, these results suggest that both Aft-dependent and Aft-independent pathways may contribute to iron regulation of SMF3.


Assuntos
Proteínas de Transporte de Cátions/fisiologia , Ferro/fisiologia , Manganês/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Regulação Fúngica da Expressão Gênica/fisiologia , RNA Mensageiro/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/fisiologia
11.
J Bioenerg Biomembr ; 34(5): 373-9, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12539964

RESUMO

Copper serves as the essential cofactor for a number of enzymes involved in redox chemistry and virtually all organisms must accumulate trace levels of copper in order to survive. However, this metal can also be toxic and a number of effective methods for sequestering and detoxifying copper prevent the metal from freely circulating inside a cell. Copper metalloenzymes are therefore faced with the challenge of acquiring their precious metal cofactor in the absence of available copper. To overcome this dilemma, all eukaryotic organisms have evolved with a family of intracellular copper binding proteins that help reserve a bioavailable pool of copper for the metalloenzymes, escort the metal to appropriate targets, and directly transfer the copper ion. These proteins have been collectively called "copper chaperones." The identification of such molecules has been made possible through molecular genetic studies in the bakers' yeast Saccharomyces cerevisiae. In this review, we highlight the findings that led to a new paradigm of intracellular trafficking of copper involving the action of copper chaperones. In particular, emphasis will be placed on the ATX1 and CCS copper chaperones that act to deliver copper to the secretory pathway and to Cu/Zn superoxide dismutase in the cytosol, respectively.


Assuntos
Cobre/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Transporte/metabolismo , Humanos , Modelos Biológicos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1
12.
J Biol Chem ; 278(14): 12278-84, 2003 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-12529325

RESUMO

We explored the role of known copper transporters and chaperones in delivering copper to peptidylglycine-alpha-hydroxylating monooxygenase (PHM), a copper-dependent enzyme that functions in the secretory pathway lumen. We examined the roles of yeast Ccc2, a P-type ATPase related to human ATP7A (Menkes disease protein) and ATP7B (Wilson disease protein), as well as yeast Atx1, a cytosolic copper chaperone. We expressed soluble PHMcc (catalytic core) in yeast using the yeast pre-pro-alpha-mating factor leader region to target the enzyme to the secretory pathway. Although the yeast genome encodes no PHM-like enzyme, PHMcc expressed in yeast is at least as active as PHMcc produced by mammalian cells. PHMcc partially co-migrated with a Golgi marker during subcellular fractionation and partially co-localized with Ccc2 based on immunofluorescence. To determine whether production of active PHM was dependent on copper trafficking pathways involving the CCC2 or ATX1 genes, we expressed PHMcc in wild-type, ccc2, and atx1 mutant yeast. Although ccc2 and atx1 mutant yeast produce normal levels of PHMcc protein, it lacks catalytic activity. Addition of exogenous copper yields fully active PHMcc. Similarly, production of active PHM in mouse fibroblasts is impaired in the presence of a mutant ATP7A gene. Although delivery of copper to lumenal cuproproteins like PAM involves ATP7A, lumenal chaperones may not be required.


Assuntos
Cobre/farmacologia , Oxigenases de Função Mista/metabolismo , Complexos Multienzimáticos/metabolismo , Proteínas Recombinantes de Fusão , Saccharomyces cerevisiae/enzimologia , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Células Cultivadas , Proteínas de Transporte de Cobre , ATPases Transportadoras de Cobre , Fibroblastos/citologia , Regulação Enzimológica da Expressão Gênica , Complexo de Golgi/metabolismo , Camundongos , Oxigenases de Função Mista/genética , Complexos Multienzimáticos/genética , Ratos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Frações Subcelulares/enzimologia
13.
J Biol Chem ; 279(29): 29938-43, 2004 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-15107423

RESUMO

Saccharomyces cerevisiae lacking Cu,Zn superoxide dismutase (SOD1) show several metabolic defects including aerobic blockages in methionine and lysine biosynthesis. We have previously shown that mutations in genes implicated in the formation of iron-sulfur clusters, designated seo (suppressors of endogenous oxidation), reverse the oxygen-dependent methionine and lysine auxotrophies of a sod1Delta strain. We now report the surprising finding that seo mutants do not reduce oxidative damage as shown by the lack of reduction of EPR-detectable "free" iron, which is characteristic of sod1Delta mutants. In fact, they exhibit increased oxidative damage as evidenced by increased accumulation of protein carbonyls. The seo class of mutants overaccumulates mitochondrial iron, and this iron accumulation is critical for suppression of the sod1Delta biosynthetic defects. Blocking overaccumulation of mitochondrial iron abolished the ability of the seo mutants to suppress the sod1Delta auxotrophies. By contrast, increasing the mitochondrial iron content of sod1Delta yeast using high copy MMT1, which encodes a mitochondrial iron transporter, was sufficient to mimic the seo mutants. Our studies indicated that suppression of the sod1Delta methionine auxotrophy was dependent on the pentose phosphate pathway, which is a major source of NADPH production. By comparison, the sod1Delta lysine auxotrophy appears to be reversed in the seo mutants by increased expression of genes in the lysine biosynthetic pathway, perhaps through sensing of mitochondrial damage by the retrograde response.


Assuntos
Proteínas Ferro-Enxofre/genética , Saccharomyces cerevisiae/genética , Superóxido Dismutase/genética , Carbono/química , Núcleo Celular/metabolismo , Relação Dose-Resposta a Droga , Espectroscopia de Ressonância de Spin Eletrônica , Ferro/metabolismo , Lisina/química , Metionina/química , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mutação , Estresse Oxidativo , Oxigênio/metabolismo , Plasmídeos/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
14.
J Biol Chem ; 278(30): 28052-9, 2003 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-12748182

RESUMO

We have previously shown that a fraction of yeast copper/zinc-superoxide dismutase (SOD1) and its copper chaperone CCS localize to the intermembrane space of mitochondria. In the present study, we have focused on the mechanism by which SOD1 is partitioned between cytosolic and mitochondrial pools. Using in vitro mitochondrial import assays, we show that only a very immature form of the SOD1 polypeptide that is apo for both copper and zinc can efficiently enter the mitochondria. Moreover, a conserved disulfide in SOD1 that is essential for activity must be reduced to facilitate mitochondrial uptake of SOD1. Once inside the mitochondria, SOD1 is converted to an active holo enzyme through the same post-translational modifications seen with cytosolic SOD1. The presence of high levels of CCS in the mitochondrial intermembrane space results in enhanced mitochondrial accumulation of SOD1, and this apparently involves CCS-mediated retention of SOD1 within mitochondria. This retention of SOD1 is not dependent on copper loading of the enzyme but does require protein-protein interactions at the heterodimerization interface of SOD1 and CCS as well as conserved cysteine residues in both molecules. A model for how CCS-mediated post-translational modification of SOD1 controls its partitioning between the mitochondria and cytosol will be presented.


Assuntos
Mitocôndrias/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase/farmacocinética , Membrana Celular/metabolismo , Cisteína/química , Citosol/metabolismo , Dimerização , Dissulfetos/metabolismo , Modelos Biológicos , Modelos Moleculares , Mutação , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo
15.
Proc Natl Acad Sci U S A ; 101(16): 5964-9, 2004 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-15069187

RESUMO

The Cu- and Zn-containing superoxide dismutase 1 (SOD1) largely obtains Cu in vivo by means of the action of the Cu chaperone CCS. Yet, in the case of mammalian SOD1, a secondary pathway of activation is apparent. Specifically, when human SOD1 is expressed in either yeast or mammalian cells that are null for CCS, the SOD1 enzyme retains a certain degree of activity. This CCS-independent activity is evident with both wild-type and mutant variants of SOD1 that have been associated with familial amyotrophic lateral sclerosis. We demonstrate here that the CCS-independent activation of mammalian SOD1 involves glutathione, particularly the reduced form, or GSH. A role for glutathione in CCS-independent activation was seen with human SOD1 molecules that were expressed in either yeast cells or immortalized fibroblasts. Compared with mammalian SOD1, the Saccharomyces cerevisiae enzyme cannot obtain Cu without CCS in vivo, and this total dependence on CCS involves the presence of dual prolines near the C terminus of the SOD1 polypeptide. Indeed, the insertion of such prolines into human SOD1 rendered this molecule refractory to CCS-independent activation. The possible implications of multiple pathways for SOD1 activation are discussed in the context of SOD1 evolutionary biology and familial amyotrophic lateral sclerosis.


Assuntos
Cobre/química , Chaperonas Moleculares/fisiologia , Proteínas de Saccharomyces cerevisiae , Superóxido Dismutase/metabolismo , Zinco/química , Animais , Linhagem Celular , Ativação Enzimática , Glutationa/metabolismo , Camundongos , Chaperonas Moleculares/metabolismo , Mutação , Superóxido Dismutase/química , Superóxido Dismutase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA