Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Cell ; 176(3): 564-580.e19, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30580964

RESUMO

There are still gaps in our understanding of the complex processes by which p53 suppresses tumorigenesis. Here we describe a novel role for p53 in suppressing the mevalonate pathway, which is responsible for biosynthesis of cholesterol and nonsterol isoprenoids. p53 blocks activation of SREBP-2, the master transcriptional regulator of this pathway, by transcriptionally inducing the ABCA1 cholesterol transporter gene. A mouse model of liver cancer reveals that downregulation of mevalonate pathway gene expression by p53 occurs in premalignant hepatocytes, when p53 is needed to actively suppress tumorigenesis. Furthermore, pharmacological or RNAi inhibition of the mevalonate pathway restricts the development of murine hepatocellular carcinomas driven by p53 loss. Like p53 loss, ablation of ABCA1 promotes murine liver tumorigenesis and is associated with increased SREBP-2 maturation. Our findings demonstrate that repression of the mevalonate pathway is a crucial component of p53-mediated liver tumor suppression and outline the mechanism by which this occurs.


Assuntos
Ácido Mevalônico/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Linhagem Celular , Colesterol/metabolismo , Feminino , Genes Supressores de Tumor , Células HCT116 , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/genética , Regiões Promotoras Genéticas , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Terpenos/metabolismo
2.
Haematologica ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934082

RESUMO

The treatment of blast phase chronic myeloid leukemia (bpCML) remains a challenge due at least in part to drug resistance of leukemia stem cells (LSCs). Recent clinical evidence suggests that the BCL-2 inhibitor venetoclax in combination with ABL-targeting tyrosine kinase inhibitors (TKIs) can eradicate bpCML LSCs. In this report, we employed preclinical models of bpCML to investigate the efficacy and underlying mechanism of LSC-targeting with venetoclax/TKI combinations. Transcriptional analysis of LSCs exposed to venetoclax and dasatinib revealed upregulation of genes involved in lysosomal biology, in particular lysosomal acid lipase A (LIPA), a regulator of free fatty acids. Metabolomic analysis confirmed increased levels of free fatty acids in response to venetoclax/dasatinib. Pre-treatment of leukemia cells with bafilomycin, a specific lysosome inhibitor, or genetic perturbation of LIPA, resulted in increased sensitivity of leukemia cells toward venetoclax/dasatinib, implicating LIPA in treatment resistance. Importantly, venetoclax/dasatinib treatment does not affect normal stem cell function, suggestive of a leukemia-specific response. These results demonstrate that venetoclax/dasatinib is an LSCselective regimen in bpCML and that disrupting LIPA and fatty acid transport enhances venetoclax/dasatinib response in targeting LSCs, providing a rationale for exploring lysosomal disruption as an adjunct therapeutic strategy to prolong disease remission.

3.
Haematologica ; 108(9): 2343-2357, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37021547

RESUMO

Outcomes for patients with acute myeloid leukemia (AML) remain poor due to the inability of current therapeutic regimens to fully eradicate disease-initiating leukemia stem cells (LSC). Previous studies have demonstrated that oxidative phosphorylation (OXPHOS) is an essential process that is targetable in LSC. Sirtuin 3 (SIRT3), a mitochondrial deacetylase with a multi-faceted role in metabolic regulation, has been shown to regulate OXPHOS in cancer models; however, it has not yet been studied in the context of LSC. Thus, we sought to identify if SIRT3 is important for LSC function. Using RNAi and a SIRT3 inhibitor (YC8-02), we demonstrate that SIRT3 is a critical target for the survival of primary human LSC but is not essential for normal human hematopoietic stem and progenitor cell function. In order to elucidate the molecular mechanisms by which SIRT3 is essential in LSC we combined transcriptomic, proteomic, and lipidomic approaches, showing that SIRT3 is important for LSC function through the regulation of fatty acid oxidation (FAO) which is required to support OXPHOS and ATP production in human LSC. Further, we discovered two approaches to further sensitize LSC to SIRT3 inhibition. First, we found that LSC tolerate the toxic effects of fatty acid accumulation induced by SIRT3 inhibition by upregulating cholesterol esterification. Disruption of cholesterol homeostasis sensitizes LSC to YC8-02 and potentiates LSC death. Second, SIRT3 inhibition sensitizes LSC to the BCL-2 inhibitor venetoclax. Together, these findings establish SIRT3 as a regulator of lipid metabolism and potential therapeutic target in primitive AML cells.


Assuntos
Leucemia Mieloide Aguda , Sirtuína 3 , Humanos , Sirtuína 3/genética , Sirtuína 3/metabolismo , Sirtuína 3/farmacologia , Proteômica , Células-Tronco Neoplásicas/metabolismo , Metabolismo dos Lipídeos , Homeostase , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos/farmacologia , Ácidos Graxos/uso terapêutico , Colesterol
4.
Proc Natl Acad Sci U S A ; 117(44): 27516-27527, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33077601

RESUMO

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system. The etiology of MS is multifactorial, with disease risk determined by genetics and environmental factors. An emerging risk factor for immune-mediated diseases is an imbalance in the gut microbiome. However, the identity of gut microbes associated with disease risk, their mechanisms of action, and the interactions with host genetics remain obscure. To address these questions, we utilized the principal autoimmune model of MS, experimental autoimmune encephalomyelitis (EAE), together with a genetically diverse mouse model representing 29 unique host genotypes, interrogated by microbiome sequencing and targeted microbiome manipulation. We identified specific gut bacteria and their metabolic functions associated with EAE susceptibility, implicating short-chain fatty acid metabolism as a key element conserved across multiple host genotypes. In parallel, we used a reductionist approach focused on two of the most disparate phenotypes identified in our screen. Manipulation of the gut microbiome by transplantation and cohousing demonstrated that transfer of these microbiomes into genetically identical hosts was sufficient to modulate EAE susceptibility and systemic metabolite profiles. Parallel bioinformatic approaches identified Lactobacillus reuteri as a commensal species unexpectedly associated with exacerbation of EAE in a genetically susceptible host, which was functionally confirmed by bacterial isolation and commensal colonization studies. These results reveal complex interactions between host genetics and gut microbiota modulating susceptibility to CNS autoimmunity, providing insights into microbiome-directed strategies aimed at lowering the risk for autoimmune disease and underscoring the need to consider host genetics and baseline gut microbiome composition.


Assuntos
Encefalomielite Autoimune Experimental/genética , Microbioma Gastrointestinal/imunologia , Predisposição Genética para Doença , Interações entre Hospedeiro e Microrganismos/imunologia , Esclerose Múltipla/genética , Animais , Autoimunidade/genética , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/microbiologia , Feminino , Variação Genética , Interações entre Hospedeiro e Microrganismos/genética , Humanos , Limosilactobacillus reuteri/imunologia , Masculino , Camundongos , Esclerose Múltipla/imunologia , Esclerose Múltipla/microbiologia
5.
Blood ; 134(4): 389-394, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31101624

RESUMO

We have previously demonstrated that oxidative phosphorylation is required for the survival of human leukemia stem cells (LSCs) from patients with acute myeloid leukemia (AML). More recently, we demonstrated that LSCs in patients with de novo AML rely on amino acid metabolism to drive oxidative phosphorylation. Notably, although overall levels of amino acids contribute to LSC energy metabolism, our current findings suggest that cysteine may be of particular importance for LSC survival. We demonstrate that exogenous cysteine is metabolized exclusively to glutathione. Upon cysteine depletion, glutathione synthesis is impaired, leading to reduced glutathionylation of succinate dehydrogenase A (SDHA), a key component of electron transport chain complex (ETC) II. Loss of SDHA glutathionylation impairs ETC II activity, thereby inhibiting oxidative phosphorylation, reducing production of ATP, and leading to LSC death. Given the role of cysteine in driving LSC energy production, we tested cysteine depletion as a potential therapeutic strategy. Using a novel cysteine-degrading enzyme, we demonstrate selective eradication of LSCs, with no detectable effect on normal hematopoietic stem/progenitor cells. Together, these findings indicate that LSCs are aberrantly reliant on cysteine to sustain energy metabolism, and that targeting this axis may represent a useful therapeutic strategy.


Assuntos
Cisteína/metabolismo , Complexo II de Transporte de Elétrons/antagonistas & inibidores , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Neoplásicas/metabolismo , Trifosfato de Adenosina/metabolismo , Biomarcadores , Metabolismo Energético , Glutationa/metabolismo , Humanos , Oxirredução , Fosforilação Oxidativa , Espécies Reativas de Oxigênio/metabolismo , Succinato Desidrogenase/metabolismo
6.
Haematologica ; 106(5): 1290-1302, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32241843

RESUMO

Red blood cell storage in the blood bank promotes the progressive accumulation of metabolic alterations that may ultimately impact the erythrocyte capacity to cope with oxidant stressors. However, the metabolic underpinnings of the capacity of RBCs to resist oxidant stress and the potential impact of donor biology on this phenotype are not known. Within the framework of the REDS-III RBC-Omics study, RBCs from 8,502 healthy blood donors were stored for 42 days and tested for their propensity to hemolyze following oxidant stress. A subset of extreme hemolyzers donated a second unit of blood, which was stored for 10, 23, and 42 days and profiled again for oxidative hemolysis and metabolomics (599 samples). Alterations of RBC energy and redox homeostasis were noted in donors with high oxidative hemolysis. RBCs from females, donors over 60 years old, donors of Asian/South Asian race-ethnicity, and RBCs stored in additive solution-3 were each independently characterized by improved antioxidant metabolism compared to, respectively, males, donors under 30 years old, Hispanic and African American race ethnicity donors, and RBCs stored in additive solution-1. Merging metabolomics data with results from an independent GWAS study on the same cohort, we identified metabolic markers of hemolysis and G6PD-deficiency, which were associated with extremes in oxidative hemolysis and dysregulation in NADPH and glutathione-dependent detoxification pathways of oxidized lipids. Donor sex, age, ethnicity, additive solution and G6PD status impact the metabolism of the stored erythrocyte and its susceptibility to hemolysis following oxidative insults.


Assuntos
Preservação de Sangue , Glucosefosfato Desidrogenase , Adulto , Antioxidantes , Eritrócitos , Etnicidade , Feminino , Glucose , Glucosefosfato Desidrogenase/genética , Hemólise , Humanos , Masculino , Pessoa de Meia-Idade , Fosfatos
7.
FASEB J ; 33(9): 10528-10537, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31260634

RESUMO

The circadian clock is important for cellular and organ function. However, its function in sickle cell disease (SCD), a life-threatening hemolytic disorder, remains unknown. Here, we performed an unbiased microarray screen, which revealed significantly altered expression of circadian rhythmic genes, inflammatory response genes, and iron metabolic genes in SCD Berkeley transgenic mouse lungs compared with controls. Given the vital role of period 2 (Per2) in the core clock and the unrecognized role of Per2 in SCD, we transplanted the bone marrow (BM) of SCD mice to Per2Luciferase mice, which revealed that Per2 expression was up-regulated in SCD mouse lung. Next, we transplanted the BM of SCD mice to period 1 (Per1)/Per2 double deficient [Per1/Per2 double knockout (dKO)] and wild-type mice, respectively. We discovered that Per1/Per2 dKO mice transplanted with SCD BM (SCD → Per1/Per2 dKO) displayed severe irradiation sensitivity and were more susceptible to an early death. Although we observed an increase of peripheral inflammatory cells, we did not detect differences in erythrocyte sickling. However, there was further lung damage due to elevated pulmonary congestion, inflammatory cell infiltration, iron overload, and secretion of IL-6 in lavage fluid. Overall, we demonstrate that Per1/Per2 is beneficial to counteract elevated systemic inflammation, lung tissue inflammation, and iron overload in SCD.-Adebiyi, M. G., Zhao, Z., Ye, Y., Manalo, J., Hong, Y., Lee, C. C., Xian, W., McKeon, F., Culp-Hill, R., D' Alessandro, A., Kellems, R. E., Yoo, S.-H., Han, L., Xia, Y. Circadian period 2: a missing beneficial factor in sickle cell disease by lowering pulmonary inflammation, iron overload, and mortality.


Assuntos
Anemia Falciforme/mortalidade , Relógios Circadianos , Ritmo Circadiano/genética , Sobrecarga de Ferro/mortalidade , Proteínas Circadianas Period/fisiologia , Pneumonia/mortalidade , Anemia Falciforme/genética , Anemia Falciforme/terapia , Animais , Transplante de Medula Óssea , Perfilação da Expressão Gênica , Sobrecarga de Ferro/genética , Sobrecarga de Ferro/terapia , Camundongos , Camundongos Knockout , Pneumonia/genética , Pneumonia/terapia
8.
Transfusion ; 59(1): 89-100, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30353560

RESUMO

BACKGROUND: Biological and technical variability has been increasingly appreciated as a key factor impacting red blood cell (RBC) storability and, potentially, transfusion outcomes. Here, we performed metabolomics analyses to investigate the impact of factors other than storage duration on the metabolic phenotypes of stored RBC in a multicenter study. STUDY DESIGN AND METHODS: Within the framework of the REDS-III (Recipient Epidemiology and Donor Evaluation Study-III) RBC-Omics study, 13,403 donors were enrolled from four blood centers across the United States and tested for the propensity of their RBCs to hemolyze after 42 days of storage. Extreme hemolyzers were recalled and donated a second unit of blood. Units were stored for 10, 23, and 42 days prior to sample acquisition for metabolomics analyses. RESULTS: Unsupervised analyses of metabolomics data from 599 selected samples revealed a strong impact (14.2% of variance) of storage duration on metabolic phenotypes of RBCs. The blood center collecting and processing the units explained an additional 12.2% of the total variance, a difference primarily attributable to the storage additive (additive solution 1 vs. additive solution 3) used in the different hubs. Samples stored in mannitol-free/citrate-loaded AS-3 were characterized by elevated levels of high-energy compounds, improved glycolysis, and glutathione homeostasis. Increased methionine metabolism and activation of the transsulfuration pathway was noted in samples processed in the center using additive solution 1. CONCLUSION: Blood processing impacts the metabolic heterogeneity of stored RBCs from the largest multicenter metabolomics study in transfusion medicine to date. Studies are needed to understand if these metabolic differences influenced by processing/storage strategies impact the effectiveness of transfusions clinically.


Assuntos
Eritrócitos/citologia , Metabolômica/métodos , Análise de Variância , Preservação de Sangue/métodos , Eritrócitos/metabolismo , Glicólise , Humanos , Técnicas In Vitro , Metionina/metabolismo , Análise Multivariada , Fatores de Tempo
9.
Metabolomics ; 14(7): 100, 2018 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-30830393

RESUMO

INTRODUCTION: Mass spectrometry and computational biology have advanced significantly in the past ten years, bringing the field of metabolomics a step closer to personalized medicine applications. Despite these analytical advancements, collection of blood samples for routine clinical analysis is still performed through traditional blood draws. OBJECTIVE: TAP capillary blood collection has been recently introduced for the rapid, painless draw of small volumes of blood (~ 100 µL), though little is known about the comparability of metabolic phenotypes of blood drawn via traditional venipuncture and TAP devices. METHODS: UHPLC-MS-targeted metabolomics analyses were performed on blood drawn traditionally or through TAP devices from 5 healthy volunteers. Absolute quantitation of 45 clinically-relevant metabolites was calculated against stable heavy isotope-labeled internal standards. RESULTS: Ranges for 39 out of 45 quantified metabolites overlapped between drawing methods. Pyruvate and succinate were over threefold higher in the TAP samples than in traditional blood draws. No significant changes were observed for other carboxylates, glucose or lactate. TAP samples were characterized by increases in reduced glutathione and decreases in urate and cystine, markers of oxidation of purines and cysteine-overall suggesting decreased oxidation during draws. The absolute levels of bile acids and acyl-carnitines, as well as almost all amino acids, perfectly correlated among groups (Spearman r ≥ 0.95). CONCLUSION: Though further more extensive studies will be mandatory, this pilot suggests that TAP-derived blood may be a logistically-friendly source of blood for large scale metabolomics studies-especially those addressing amino acids, glycemia and lactatemia as well as bile acids, acyl-carnitine levels.


Assuntos
Coleta de Amostras Sanguíneas , Metabolômica , Adulto , Cromatografia Líquida de Alta Pressão , Feminino , Voluntários Saudáveis , Humanos , Masculino , Espectrometria de Massas , Adulto Jovem
10.
Transfusion ; 58(12): 2797-2806, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30265764

RESUMO

BACKGROUND: Exchange transfusion is a mainstay in the treatment of sickle cell anemia. Transfusion recipients with sickle cell disease (SCD) can be transfused over 10 units per therapy, an intervention that replaces circulating sickle red blood cells (RBCs) with donor RBCs. Storage of RBCs makes the intervention logistically feasible. The average storage duration for units transfused at the Duke University Medical Center is approximately 2 weeks, a time window that should anticipate the accumulation of irreversible storage lesion to the RBCs. However, no metabolomics study has been performed to date to investigate the impact of exchange transfusion on recipients' plasma and RBC phenotypes. STUDY DESIGN AND METHODS: Plasma and RBCs were collected from patients with sickle cell anemia before transfusion and within 5 hours after exchange transfusion with up to 11 units, prior to metabolomics analyses. RESULTS: Exchange transfusion significantly decreased plasma levels of markers of systemic hypoxemia like lactate, succinate, sphingosine 1-phosphate, and 2-hydroxyglutarate. These metabolites accumulated in transfused RBCs, suggesting that RBCs may act as scavenger/reservoirs. Transfused RBCs displayed higher glycolysis, total adenylate pools, and 2,3-diphosphoglycerate, consistent with increased capacity to deliver oxygen. Plasma levels of acyl-carnitines and amino acids decreased, while fatty acids and potentially harmful phthalates increased upon exchange transfusion. CONCLUSION: Metabolic phenotypes confirm the benefits of the transfusion therapy in transfusion recipients with SCD and the reversibility of some of the metabolic storage lesion upon transfusion in vivo in 2-week-old RBCs. However, results also suggest that potentially harmful plasticizers are transfused.


Assuntos
Anemia Falciforme , Preservação de Sangue , Transfusão de Eritrócitos , Eritrócitos/metabolismo , Plasma/metabolismo , Adulto , Anemia Falciforme/sangue , Anemia Falciforme/terapia , Feminino , Humanos , Masculino , Metabolômica
11.
Transfusion ; 58(8): 1992-2002, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29624679

RESUMO

BACKGROUND: Over a century of advancements in the field of additive solutions for red blood cell (RBC) storage has made transfusion therapy a safe and effective practice for millions of recipients worldwide. Still, storage in the blood bank results in the progressive accumulation of metabolic alterations, a phenomenon that is mitigated by storage in novel storage additives, such as alkaline additive solutions. While novel alkaline additive formulations have been proposed, no metabolomics characterization has been performed to date. STUDY DESIGN AND METHODS: We performed UHPLC-MS metabolomics analyses of red blood cells stored in SAGM (standard additive in Europe), (PAGGSM), or alkaline additives SOLX, E-SOL 5 and PAG3M for either 1, 21, 35 (end of shelf-life in the Netherlands), or 56 days. RESULTS: Alkaline additives (especially PAG3M) better preserved 2,3-diphosphoglycerate and adenosine triphosphate (ATP). Deaminated purines such as hypoxanthine were predictive of hemolysis and morphological alterations. Guanosine supplementation in PAGGSM and PAG3M fueled ATP generation by feeding into the nonoxidative pentose phosphate pathway via phosphoribolysis. Decreased urate to hypoxanthine ratios were observed in alkaline additives, suggestive of decreased generation of urate and hydrogen peroxide. Despite the many benefits observed in purine and redox metabolism, alkaline additives did not prevent accumulation of free fatty acids and oxidized byproducts, opening a window for future alkaline formulations including (lipophilic) antioxidants. CONCLUSION: Alkalinization via different strategies (replacement of chloride anions with either high bicarbonate, high citrate/phosphate, or membrane impermeant gluconate) results in different metabolic outcomes, which are superior to current canonical additives in all cases.


Assuntos
Antiácidos/farmacologia , Preservação de Sangue/métodos , Eritrócitos/citologia , Gluconatos/farmacologia , Guanosina/farmacologia , Metabolômica/métodos , Antiácidos/metabolismo , Gluconatos/metabolismo , Guanosina/metabolismo , Humanos , Purinas/metabolismo , Soluções
12.
Transfusion ; 58(8): 1980-1991, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29687892

RESUMO

BACKGROUND: Refrigerated red blood cell (RBC) storage results in the progressive accumulation of biochemical and morphological alterations collectively referred to as the storage lesion. Storage-induced metabolic alterations can be in part reversed by rejuvenation practices. However, rejuvenation requires an incubation step of RBCs for 1 hour at 37°C, limiting the practicality of providing "on-demand," rejuvenated RBCs. We tested the hypothesis that the addition of rejuvenation solution early in storage as an adjunct additive solution would prevent-in a time window consistent with the average age of units transfused to sickle cell recipients at Duke (15 days)-many of the adverse biochemical changes that can be reversed via standard rejuvenation, while obviating the incubation step. STUDY DESIGN AND METHODS: Metabolomics analyses were performed on cells and supernatants from AS-1 RBC units (n = 4), stored for 15 days. Units were split into pediatric bag aliquots and stored at 4°C. These were untreated controls, washed with or without rejuvenation, performed under either standard (37°C) or cold (4°C) conditions. RESULTS: All three treatments removed most metabolic storage by-products from RBC supernatants. However, only standard and cold rejuvenation provided significant metabolic benefits as judged by the reactivation of glycolysis and regeneration of adenosine triphosphate and 2,3-diphosphoglycerate. Improvements in energy metabolism also translated into increased capacity to restore the total glutathione pool and regenerate oxidized vitamin C in its reduced (ascorbate) form. CONCLUSION: Cold and standard rejuvenation of 15-day-old RBCs primes energy and redox metabolism of stored RBCs, while providing a logistic advantage for routine blood bank processing workflows.


Assuntos
Preservação de Sangue/métodos , Eritrócitos/citologia , Metabolômica/métodos , Rejuvenescimento , Temperatura , 2,3-Difosfoglicerato/metabolismo , Trifosfato de Adenosina/metabolismo , Armazenamento de Sangue/métodos , Metabolismo Energético , Glicólise , Humanos , Oxirredução
13.
Transfusion ; 58(12): 2978-2991, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30312994

RESUMO

BACKGROUND: Being devoid of de novo protein synthesis capacity, red blood cells (RBCs) have evolved to recycle oxidatively damaged proteins via mechanisms that involve methylation of dehydrated and deamidated aspartate and asparagine residues. Here we hypothesize that such mechanisms are relevant to routine storage in the blood bank. STUDY DESIGN AND METHODS: Within the framework of the REDS-III RBC-Omics (Recipient Epidemiology Donor Evaluation Study III Red Blood Cell-Omics) study, packed RBC units (n = 599) were stored under blood bank conditions for 10, 23, and 42 days and profiled for oxidative hemolysis and time-dependent metabolic dysregulation of the trans-sulfuration pathway. RESULTS: In these units, methionine consumption positively correlated with storage age and oxidative hemolysis. Mechanistic studies show that this phenomenon is favored by oxidative stress or hyperoxic storage (sulfur dioxide >95%), and prevented by hypoxia or methyltransferase inhibition. Through a combination of proteomics approaches and 13 C-methionine tracing, we observed oxidation-induced increases in both Asn deamidation to Asp and formation of methyl-Asp on key structural proteins and enzymes, including Band 3, hemoglobin, ankyrin, 4.1, spectrin beta, aldolase, glyceraldehyde 3-phosphate dehydrogenase, biphosphoglycerate mutase, lactate dehydrogenase and catalase. Methylated regions tended to map proximal to the active site (e.g., N316 of glyceraldehyde 3-phosphate dehydrogenase) and/or residues interacting with the N-terminal cytosolic domain of Band 3. CONCLUSION: While methylation of basic amino acid residues serves as an epigenetic modification in nucleated cells, protein methylation at carboxylate side chains and deamidated asparagines is a nonepigenetic posttranslational sensor of oxidative stress and refrigerated storage in anucleated human RBCs.


Assuntos
Asparagina/metabolismo , Ácido Aspártico/metabolismo , Bancos de Sangue , Preservação de Sangue , Eritrócitos/metabolismo , Estresse Oxidativo , Processamento de Proteína Pós-Traducional , Eritrócitos/citologia , Humanos , Metilação , Proteômica , Fatores de Tempo
14.
Rapid Commun Mass Spectrom ; 31(23): 2030-2034, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28910859

RESUMO

RATIONALE: High-throughput metabolomics has now made it possible for small/medium-sized laboratories to analyze thousands of samples/year from the most diverse biological matrices including biofluids, cell and tissue extracts. In large-scale metabolomics studies, stable-isotope-labeled standards are increasingly used to normalize for matrix effects and control for technical reproducibility (e.g. extraction efficiency, chromatographic retention times and mass spectrometry signal stability). However, it is currently unknown how stable mixes of commercially available standards are following repeated freeze/thaw cycles or prolonged storage of aliquots. METHODS: Standard mixes for 13 C, 15 N or deuterated isotopologues of amino acids and key metabolites from the central carbon and nitrogen pathways (e.g. glycolysis, Krebs cycle, redox homeostasis, purines) were either repeatedly frozen/thawed for up to 10 cycles or diluted into aliquots prior to frozen storage for up to 42 days. Samples were characterized by ultra-high-pressure liquid chromatography/mass spectrometry to determine the stability of the aliquoted standards upon freezing/thawing or prolonged storage. RESULTS: Metabolite standards were stable over up to 10 freeze/thaw cycles, with the exception of adenosine and glutathione, showing technical variability across aliquots in a freeze/thaw-cycle-independent fashion. Storage for up to 42 days of mixes of commercially available standards did not significantly affect the stability of amino acid or metabolite standards for the first 2 weeks, while progressive degradation (statistically significant for fumarate) was observed after 3 weeks. CONCLUSIONS: Refrigerated or frozen preservation for at least 2 weeks of aliquoted heavy-labeled standard mixes for metabolomics analysis is a feasible and time-/resource-saving strategy for standard metabolomics laboratories.


Assuntos
Aminoácidos/química , Criopreservação , Metabolômica/métodos , Aminoácidos/normas , Isótopos de Carbono/química , Isótopos de Carbono/normas , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida de Alta Pressão/normas , Criopreservação/métodos , Congelamento , Espectrometria de Massas/métodos , Espectrometria de Massas/normas , Redes e Vias Metabólicas , Metabolômica/normas , Isótopos de Nitrogênio/química , Isótopos de Nitrogênio/normas , Padrões de Referência
15.
Cell Death Dis ; 15(2): 105, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302438

RESUMO

Aconitate decarboxylase 1 (ACOD1) is the enzyme synthesizing itaconate, an immuno-regulatory metabolite tuning host-pathogen interactions. Such functions are achieved by affecting metabolic pathways regulating inflammation and microbe survival. However, at the whole-body level, metabolic roles of itaconate remain largely unresolved. By using multiomics-integrated approaches, here we show that ACOD1 responds to high-fat diet consumption in mice by promoting gut microbiota alterations supporting metabolic disease. Genetic disruption of itaconate biosynthesis protects mice against obesity, alterations in glucose homeostasis and liver metabolic dysfunctions by decreasing meta-inflammatory responses to dietary lipid overload. Mechanistically, fecal metagenomics and microbiota transplantation experiments demonstrate such effects are dependent on an amelioration of the intestinal ecosystem composition, skewed by high-fat diet feeding towards obesogenic phenotype. In particular, unbiased fecal microbiota profiling and axenic culture experiments point towards a primary role for itaconate in inhibiting growth of Bacteroidaceae and Bacteroides, family and genus of Bacteroidetes phylum, the major gut microbial taxon associated with metabolic health. Specularly to the effects imposed by Acod1 deficiency on fecal microbiota, oral itaconate consumption enhances diet-induced gut dysbiosis and associated obesogenic responses in mice. Unveiling an unrecognized role of itaconate, either endogenously produced or exogenously administered, in supporting microbiota alterations underlying diet-induced obesity in mice, our study points ACOD1 as a target against inflammatory consequences of overnutrition.


Assuntos
Microbioma Gastrointestinal , Succinatos , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo
16.
Metabolites ; 13(4)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37110126

RESUMO

Recent advances in targeting leukemic stem cells (LSCs) using venetoclax with azacitidine (ven + aza) has significantly improved outcomes for de novo acute myeloid leukemia (AML) patients. However, patients who relapse after traditional chemotherapy are often venetoclax-resistant and exhibit poor clinical outcomes. We previously described that fatty acid metabolism drives oxidative phosphorylation (OXPHOS) and acts as a mechanism of LSC survival in relapsed/refractory AML. Here, we report that chemotherapy-relapsed primary AML displays aberrant fatty acid and lipid metabolism, as well as increased fatty acid desaturation through the activity of fatty acid desaturases 1 and 2, and that fatty acid desaturases function as a mechanism of recycling NAD+ to drive relapsed LSC survival. When combined with ven + aza, the genetic and pharmacologic inhibition of fatty acid desaturation results in decreased primary AML viability in relapsed AML. This study includes the largest lipidomic profile of LSC-enriched primary AML patient cells to date and indicates that inhibition of fatty acid desaturation is a promising therapeutic target for relapsed AML.

17.
Mol Cancer Res ; 20(11): 1659-1673, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-35994381

RESUMO

Acute myeloid leukemia (AML) is a hematologic malignancy metabolically dependent on oxidative phosphorylation and mitochondrial electron transport chain (ETC) activity. AML cells are distinct from their normal hematopoietic counterparts by this metabolic reprogramming, which presents targets for new selective therapies. Here, metabolic changes in AML cells after ETC impairment are investigated. Genetic knockdown of the ETC complex II (CII) chaperone protein SDHAF1 (succinate dehydrogenase assembly factor 1) suppressed CII activity and delayed AML cell growth in vitro and in vivo. As a result, a novel small molecule that directly binds to the ubiquinone binding site of CII and inhibits its activity was identified. Pharmacologic inhibition of CII induced selective death of AML cells while sparing normal hematopoietic progenitors. Through stable isotope tracing, results show that genetic or pharmacologic inhibition of CII truncates the tricarboxylic acid cycle (TCA) and leads to anaplerotic glutamine metabolism to reestablish the truncated cycle. The inhibition of CII showed divergent fates, as AML cells lacked the metabolic plasticity to adequately utilize glutamine metabolism, resulting in preferential depletion of key TCA metabolites and death; normal cells were unaffected. These findings provide insight into the metabolic mechanisms that underlie AML's selective inhibition of CII. IMPLICATIONS: This work highlights the effects of direct CII inhibition in mediating selective AML cell death and provides insights into glutamine anaplerosis as a metabolic adaptation that can be therapeutically targeted.


Assuntos
Glutamina , Leucemia Mieloide Aguda , Humanos , Glutamina/genética , Succinato Desidrogenase/metabolismo , Succinato Desidrogenase/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Fosforilação Oxidativa
18.
Trends Mol Med ; 27(4): 332-344, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33121874

RESUMO

Acute myeloid leukemia (AML) is a cancer derived from the myeloid lineage of blood cells, characterized by overproduction of leukemic blasts. Although therapeutic improvements have made a significant impact on the outcomes of patients with AML, survival rates remain low due to a high incidence of relapse. Similar to how wildfires can reignite from hidden embers not extinguished from an initial round of firefighting, leukemic stem cells (LSCs) are the embers remaining after completion of traditional chemotherapeutic treatments. LSCs exhibit a unique metabolic profile and contain metabolically distinct subpopulations. In this review, we detail the metabolic features of LSCs and how thetse characteristics promote resistance to traditional chemotherapy. We also discuss new therapeutic approaches that target metabolic vulnerabilities of LSC to selectively eradicate them.


Assuntos
Leucemia Mieloide Aguda , Células-Tronco Neoplásicas , Fosforilação Oxidativa/efeitos dos fármacos , Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Tratamento Farmacológico , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Mitocôndrias/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
19.
Front Cell Infect Microbiol ; 11: 730413, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604112

RESUMO

Glycolysis controls cellular energy, redox balance, and biosynthesis. Antiglycolytic therapies are under investigation for treatment of obesity, cancer, aging, autoimmunity, and microbial diseases. Interrupting glycolysis is highly valued as a therapeutic strategy, because glycolytic disruption is generally tolerated in mammals. Unfortunately, anemia is a known dose-limiting side effect of these inhibitors and presents a major caveat to development of antiglycolytic therapies. We developed specific inhibitors of enolase - a critical enzyme in glycolysis - and validated their metabolic and cellular effects on human erythrocytes. Enolase inhibition increases erythrocyte susceptibility to oxidative damage and induces rapid and premature erythrocyte senescence, rather than direct hemolysis. We apply our model of red cell toxicity to address questions regarding erythrocyte glycolytic disruption in the context of Plasmodium falciparum malaria pathogenesis. Our study provides a framework for understanding red blood cell homeostasis under normal and disease states and clarifies the importance of erythrocyte reductive capacity in malaria parasite growth.


Assuntos
Antimaláricos , Malária Falciparum , Animais , Antimaláricos/farmacologia , Eritrócitos , Glicólise , Humanos , Plasmodium falciparum
20.
Cancer Discov ; 11(2): 500-519, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33028621

RESUMO

Due to the disseminated nature of leukemia, malignant cells are exposed to many different tissue microenvironments, including a variety of extramedullary sites. In the present study, we demonstrate that leukemic cells residing in the liver display unique biological properties and also contribute to systemic changes that influence physiologic responses to chemotherapy. Specifically, the liver microenvironment induces metabolic adaptations via upregulating expression of endothelial lipase in leukemia cells, which not only stimulates tumor cell proliferation through polyunsaturated fatty acid-mediated pathways, but also promotes survival by stabilizing antiapoptotic proteins. Additionally, hepatic infiltration and tissue damage caused by malignant cells induces release of liver-derived enzymes capable of degrading chemotherapy drugs, an event that further protects leukemia cells from conventional therapies. Together, these studies demonstrate a unique role for liver in modulating the pathogenesis of leukemic disease and suggest that the hepatic microenvironment may protect leukemia cells from chemotherapeutic challenge. SIGNIFICANCE: The studies presented herein demonstrate that the liver provides a microenvironment in which leukemia cells acquire unique metabolic properties. The adaptations that occur in the liver confer increased resistance to chemotherapy. Therefore, we propose that therapies designed to overcome liver-specific metabolic changes will yield improved outcomes for patients with leukemia.This article is highlighted in the In This Issue feature, p. 211.


Assuntos
Leucemia/metabolismo , Lipase/metabolismo , Fígado/metabolismo , Animais , Proliferação de Células , Modelos Animais de Doenças , Humanos , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA