Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Magn Reson Med ; 86(2): 1137-1144, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33759238

RESUMO

PURPOSE: To develop and evaluate a flexible, Bloch-equation based framework for retrospective T2∗ correction to the arterial input function (AIF) obtained with quantitative cardiac perfusion pulse sequences. METHODS: Our framework initially calculates the gadolinium concentration [Gd] based on T1 measurements alone. Next, T2∗ is estimated from this initial calculation of [Gd] while assuming fast water exchange and using the literature native T2 and static magnetic field variation (ΔB0 ) values. Finally, the [Gd] is recalculated after performing T2∗ correction to the Bloch equation signal model. Using this approach, we performed T2∗ correction to historical phantom and in vivo, dual-imaging perfusion data sets from 3 different patient groups obtained using different pulse sequences and imaging parameters. Images were processed to quantify both the AIF and resting myocardial blood flow (MBF). We also performed a sensitivity analysis of our T2∗ correction to ±20% variations in native T2 and ΔB0 . RESULTS: Compared with the ground truth [Gd] of phantom, the normalized root-means-square-error (NRMSE) in measured [Gd] was 5.1%, 1.3%, and 0.6% for uncorrected, our corrected, and Kellman's corrected, respectively. For in vivo data, both the peak AIF (7.0 ± 3.0 mM vs. 8.6 ± 7.1 mM, 7.2 ± 0.9 mM vs. 8.6 ± 1.7 mM, 7.7 ± 1.8 mM vs. 10.3 ± 5.1 mM, P < .001) and resting MBF (1.3 ± 0.1 mL/g/min vs. 1.1 ± 0.1 mL/g/min, 1.3 ± 0.1 mL/g/min vs. 1.1 ± 0.1 mL/g/min, 1.2 ± 0.1 mL/g/min vs. 0.9 ± 0.1 mL/g/min, P < .001) values were significantly different between uncorrected and corrected for all 3 patient groups. Both the peak AIF and resting MBF values varied by <5% over the said variations in native T2 and ΔB0 . CONCLUSION: Our theoretical framework enables retrospective T2∗ correction to the AIF obtained with dual-imaging, cardiac perfusion pulse sequences.


Assuntos
Meios de Contraste , Imagem de Perfusão do Miocárdio , Circulação Coronária , Humanos , Imageamento por Ressonância Magnética , Perfusão , Estudos Retrospectivos
2.
Acad Radiol ; 28(12): 1779-1786, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-32888766

RESUMO

RATIONALE AND OBJECTIVES: To develop a 16-fold accelerated real-time, free-breathing cine cardiovascular magnetic resonance (CMR) pulse sequence with compressed sensing reconstruction and test whether it is capable of producing clinically acceptable summed visual scores (SVS) and accurate left ventricular ejection fraction (LVEF) in patients with a cardiac implantable electronic device (CIED). MATERIALS AND METHODS: A 16-fold accelerated real-time cine CMR pulse sequence was developed using gradient echo readout, Cartesian k-space sampling, and compressed sensing. We scanned 13 CIED patients (mean age = 59 years; 9/4 males/females) using clinical standard, breath-hold cine and real-time, free-breathing cine. Two clinical readers performed a visual assessment of image quality in four categories (conspicuity of endocardial wall at end diastole, temporal fidelity of wall motion, any artifact level on the heart, noise) using a five-point Likert scale (1: worst; 3: clinically acceptable; 5: best). SVS was calculated as the sum of 4 individual scores, where 12 was defined as clinical acceptable. The Wilcoxon signed-rank test was performed to compare SVS, and the Bland-Altman analysis was conducted to evaluate the agreement of LVEF. RESULTS: Median scan time was 3.7 times shorter for real-time (3.5 heartbeats per slice) than clinical standard (13 heartbeats per slice, excluding nonscanning time between successive breath-hold acquisitions). Median SVS was not significantly different between clinical standard (15.0) and real-time (14.5). The mean difference in LVEF was -2% (4.7% of mean), and the limits of agreement was 5.8% (13.5% of mean). CONCLUSION: This study demonstrates that the proposed real-time cine method produces clinically acceptable SVS and relatively accurate LVEF in CIED patients.


Assuntos
Interpretação de Imagem Assistida por Computador , Imagem Cinética por Ressonância Magnética , Eletrônica , Feminino , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Volume Sistólico , Função Ventricular Esquerda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA