Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Rep ; 24(8): e57499, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37401859

RESUMO

Abnormal tau protein impairs mitochondrial function, including transport, dynamics, and bioenergetics. Mitochondria interact with the endoplasmic reticulum (ER) via mitochondria-associated ER membranes (MAMs), which coordinate and modulate many cellular functions, including mitochondrial cholesterol metabolism. Here, we show that abnormal tau loosens the association between the ER and mitochondria in vivo and in vitro. Especially, ER-mitochondria interactions via vesicle-associated membrane protein-associated protein (VAPB)-protein tyrosine phosphatase-interacting protein 51 (PTPIP51) are decreased in the presence of abnormal tau. Disruption of MAMs in cells with abnormal tau alters the levels of mitochondrial cholesterol and pregnenolone, indicating that conversion of cholesterol into pregnenolone is impaired. Opposite effects are observed in the absence of tau. Besides, targeted metabolomics reveals overall alterations in cholesterol-related metabolites by tau. The inhibition of GSK3ß decreases abnormal tau hyperphosphorylation and increases VAPB-PTPIP51 interactions, restoring mitochondrial cholesterol and pregnenolone levels. This study is the first to highlight a link between tau-induced impairments in the ER-mitochondria interaction and cholesterol metabolism.


Assuntos
Mitocôndrias , Proteínas tau , Proteínas tau/metabolismo , Mitocôndrias/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Fosfatases/farmacologia , Colesterol/metabolismo
2.
EMBO J ; 38(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30538104

RESUMO

Accumulation of the protein tau characterises Alzheimer's disease and other tauopathies, including familial forms of frontotemporal dementia (FTD) that carry pathogenic tau mutations. Another hallmark feature of these diseases is the accumulation of dysfunctional mitochondria. Although disease-associated tau is known to impair several aspects of mitochondrial function, it is still unclear whether it also directly impinges on mitochondrial quality control, specifically Parkin-dependent mitophagy. Using the mito-QC mitophagy reporter, we found that both human wild-type (hTau) and FTD mutant tau (hP301L) inhibited mitophagy in neuroblastoma cells, by reducing mitochondrial translocation of Parkin. In the Caenorhabditis elegans nervous system, hTau expression reduced mitophagy, whereas hP301L expression completely inhibited it. These effects were not due to changes in the mitochondrial membrane potential or the cytoskeleton, as tau specifically impaired Parkin recruitment to defective mitochondria by sequestering it in the cytosol. This sequestration was mediated by aberrant interactions of Parkin with the projection domain of tau. As mitochondria are dysfunctional in neurodegenerative conditions, these data suggest a vicious cycle, with tau also inhibiting the degradation of damaged mitochondria.


Assuntos
Mitocôndrias/patologia , Mitofagia , Neuroblastoma/patologia , Neurônios/patologia , Ubiquitina-Proteína Ligases/metabolismo , Proteínas tau/metabolismo , Animais , Caenorhabditis elegans , Masculino , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Transgênicos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neurônios/metabolismo , Transporte Proteico , Células Tumorais Cultivadas , Ubiquitina-Proteína Ligases/genética , Proteínas tau/genética
3.
Cell Mol Life Sci ; 75(7): 1151-1162, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29085955

RESUMO

Neurons are highly specialised cells with a large bioenergetic demand, and so require a healthy mitochondrial network to function effectively. This network is compromised in many neurological disorders, in which damaged mitochondria accumulate. Dysfunctional mitochondria can be removed via an organelle-specific autophagic pathway, a process known as mitophagy. The canonical mitophagy pathway is dependent on the actions of PINK1 (PTEN-induced putative kinase 1) and Parkin and has been well studied in immortalised cells and cultured neurons. However, evidence for a role of this mitophagy pathway in the brain is still limited, and studies suggest that there may be important differences in how neurons respond to mitochondrial damage in vitro and in vivo. Here, we first describe the evidence for a functional PINK1/Parkin mitophagy pathway in neurons, and review how this pathway is affected in disease models. We then critically evaluate the literature by comparing findings from in vitro models and more recent in vivo studies in flies and mice. The emerging picture implicates that alternative mitophagy pathways operate in neurons in vivo. New mouse models that employ fluorescent biosensors to monitor mitophagy in vivo will be instrumental to understand the relative role of the different clearance pathways in the brain under physiological and pathological conditions.


Assuntos
Mitofagia , Neurônios/metabolismo , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Mitocôndrias/metabolismo
4.
Nat Chem Biol ; 16(10): 1038-1039, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32704180
5.
BMC Neurosci ; 14: 98, 2013 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-24011177

RESUMO

BACKGROUND: Traumatic injury to the central nervous system results in damage to tissue beyond the primary injury, termed secondary degeneration. Key events thought to be associated with secondary degeneration involve aspects of mitochondrial function which may be modulated by red/near-infrared irradiation therapy (R/NIR-IT), but precisely how mitochondria are affected in vivo has not been investigated. Secondary degeneration was modelled by transecting the dorsal aspect of the optic nerve in adult rats and mitochondrial ultrastructure in intact ventral optic nerve vulnerable to secondary degeneration investigated with transmission electron microscopy. RESULTS: Despite reported increases in fission following central nervous system injury, we saw no change in mitochondrial densities in optic nerve vulnerable to secondary degeneration in vivo. However, in axons, frequency distributions of mitochondrial profile areas showed higher cumulative probabilities of smaller mitochondrial profiles at day 1 after injury. Glial mitochondrial profiles did not exhibit changes in area, but a more elliptical mitochondrial shape was observed at both day 1 and 7 following injury. Importantly, mitochondrial autophagic profiles were observed at days 1 and 7 in optic nerve vulnerable to secondary degeneration in vivo. Citrate synthase activity was used as an additional measure of mitochondrial mass in ventral optic nerve and was decreased at day 7, whereas mitochondrial aconitase activity increased at day 1 and day 28 after injury in optic nerve vulnerable to secondary degeneration. R/NIR-IT has been used to treat the injured central nervous system, with reported improvements in oxidative metabolism suggesting mitochondrial involvement, but ultrastructural information is lacking. Here we show that R/NIR-IT of injured animals resulted in distributions of mitochondrial areas and shape not significantly different from control and significantly reduced mitochondrial autophagic profiles. R/NIR-IT also resulted in decreased citrate synthase activity (day 7) and increased aconitase activity (day 1) in optic nerve vulnerable to secondary degeneration. CONCLUSIONS: These findings suggest that mitochondrial structure and activity of enzymes of the citric acid cycle are dynamically altered during secondary degeneration in vivo and R/NIR-IT may protect mitochondrial structure.


Assuntos
Raios Infravermelhos , Mitocôndrias/efeitos da radiação , Degeneração Neural/prevenção & controle , Traumatismos do Nervo Óptico/patologia , Nervo Óptico/efeitos da radiação , Animais , Mitocôndrias/ultraestrutura , Degeneração Neural/patologia , Nervo Óptico/ultraestrutura , Ratos
6.
Front Aging ; 3: 1044556, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389122

RESUMO

The proteome of a cell helps to define its functional specialization. Most proteins must be translated and properly folded to ensure their biological function, but with aging, animals lose their ability to maintain a correctly folded proteome. This leads to the accumulation of protein aggregates, decreased stress resistance, and the onset of age-related disorders. The unfolded protein response of the endoplasmic reticulum (UPRER) is a central protein quality control mechanism, the function of which is known to decline with age. Here, we show that age-related UPRER decline in Caenorhabditis elegans occurs at the onset of the reproductive period and is caused by a failure in IRE-1 endoribonuclease activities, affecting both the splicing of xbp-1 mRNA and regulated Ire1 dependent decay (RIDD) activity. Animals with a defect in germline development, previously shown to rescue the transcriptional activity of other stress responses during aging, do not show restored UPRER activation with age. This underlines the mechanistic difference between age-associated loss of UPRER activation and that of other stress responses in this system, and uncouples reproductive status from the activity of somatic maintenance pathways. These observations may aid in the development of strategies that aim to overcome the proteostasis decline observed with aging.

7.
Cell Rep ; 35(9): 109203, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34077728

RESUMO

In multiple species, certain tissue types are prone to acquiring greater loads of mitochondrial genome (mtDNA) mutations relative to others, but the mechanisms that drive these heteroplasmy differences are unknown. We find that the conserved PTEN-induced putative kinase (PINK1/PINK-1) and the E3 ubiquitin-protein ligase parkin (PDR-1), which are required for mitochondrial autophagy (mitophagy), underlie stereotyped differences in heteroplasmy of a deleterious mitochondrial genome mutation (ΔmtDNA) between major somatic tissues types in Caenorhabditis elegans. We demonstrate that tissues prone to accumulating ΔmtDNA have lower mitophagy responses than those with low mutation levels. Moreover, we show that ΔmtDNA heteroplasmy increases when proteotoxic species that are associated with neurodegenerative disease and mitophagy inhibition are overexpressed in the nervous system. These results suggest that PINK1 and parkin drive organism-wide patterns of heteroplasmy and provide evidence of a causal link between proteotoxicity, mitophagy, and mtDNA mutation levels in neurons.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Genoma Mitocondrial , Proteínas Serina-Treonina Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , DNA Mitocondrial/genética , Heteroplasmia , Mitofagia/genética , Células Musculares/metabolismo , Neurônios/metabolismo
8.
iScience ; 6: 114-127, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30240605

RESUMO

Neurons are highly dependent on mitochondria, but little is known about how they react to a local mitochondrial oxidative insult. We therefore developed a protocol in primary hippocampal cultures that combines the photosensitizer mito-KillerRed with fluorescent biosensors and photoactivatable GFP. We found in both the soma and dendrites that neurons restrict the local increase in mitochondria-derived reactive oxygen species and the decrease in ATP production to the damaged compartment, by quarantining mitochondria. Although the cytosol of both the soma and dendrites became oxidized after mito-KillerRed activation, dendrites were more sensitive to the oxidative insult. Importantly, the impaired mitochondria exhibited decreased motility and fusion, thereby avoiding the spread of oxidation throughout the neuron. These results establish how neurons manage oxidative damage and increase our understanding about the somatodendritic regulation of mitochondrial functions after a local oxidative insult.

9.
PLoS One ; 8(6): e66448, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23840470

RESUMO

Secondary degeneration of nerve tissue adjacent to a traumatic injury results in further loss of neurons, glia and function, via mechanisms that may involve oxidative stress. However, changes in indicators of oxidative stress have not yet been demonstrated in oligodendrocytes vulnerable to secondary degeneration in vivo. We show increases in the oxidative stress indicator carboxymethyl lysine at days 1 and 3 after injury in oligodendrocytes vulnerable to secondary degeneration. Dihydroethidium staining for superoxide is reduced, indicating endogenous control of this particular reactive species after injury. Concurrently, node of Ranvier/paranode complexes are altered, with significant lengthening of the paranodal gap and paranode as well as paranode disorganisation. Therapeutic administration of 670 nm light is thought to improve oxidative metabolism via mechanisms that may include increased activity of cytochrome c oxidase. Here, we show that light at 670 nm, delivered for 30 minutes per day, results in in vivo increases in cytochrome c oxidase activity co-localised with oligodendrocytes. Short term (1 day) 670 nm light treatment is associated with reductions in reactive species at the injury site. In optic nerve vulnerable to secondary degeneration superoxide in oligodendrocytes is reduced relative to handling controls, and is associated with reduced paranode abnormalities. Long term (3 month) administration of 670 nm light preserves retinal ganglion cells vulnerable to secondary degeneration and maintains visual function, as assessed by the optokinetic nystagmus visual reflex. Light at a wavelength of 670 nm may serve as a therapeutic intervention for treatment of secondary degeneration following neurotrauma.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Degeneração Neural/terapia , Traumatismos do Nervo Óptico/terapia , Estresse Oxidativo , Fototerapia/métodos , Animais , Modelos Animais de Doenças , Feminino , Degeneração Neural/metabolismo , Oligodendroglia/metabolismo , Traumatismos do Nervo Óptico/complicações , Traumatismos do Nervo Óptico/metabolismo , Ratos , Células Ganglionares da Retina/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA