RESUMO
The lack of standardised methodologies in microplastic research has been addressed in recent years as it hampers the comparison of results across studies. The quantification of microplastics in the environment is key to the assessment of the potential eco-toxicological impacts that this new category of emerging pollutants could have on terrestrial and aquatic species. Therefore, the need for protocols that are robust, simple and reliable together with their standardisation are of crucial importance. This study has focused on removal of organic matter with Fenton reagent from wastewater and sludge samples. This step of analysis was optimised by implementing a multi-digestion treatment on these samples that have high concentration of complex mixtures of organic matter, which interfere with microplastic enumeration. Moreover, this study targeted the detection of microplastics in the sub-hundred-micron size range due to the potential higher risks associated with smaller-sized particles and the limited data available from previous wastewater research. To show the validity of the method, triplicate samples of raw sewage, final effluent and sludge were independently spiked with two different sizes and types of microplastic polymers. Due to the various analytical stages required for the isolation of microplastics, time is a limiting factor in sample processing. The sequential digestion with Fenton reagent represents an inexpensive and time-efficient procedure for wastewater research providing effective degradation of organic material. These advantages over other currently available methods mean the method is suitable for analysis of large numbers of samples allowing robust monitoring data sets to be generated.
RESUMO
Here we report concentrations of pollutants in floating plastics from the North Pacific accumulation zone (NPAC). We compared chemical concentrations in plastics of different types and sizes, assessed ocean plastic potential risks using sediment quality criteria, and discussed the implications of our findings for bioaccumulation. Our results suggest that at least a fraction of the NPAC plastics is not in equilibrium with the surrounding seawater. For instance, "hard plastic" samples had significantly higher PBDE concentrations than "nets and ropes" samples, and 29% of them had PBDE composition similar to a widely used flame-retardant mixture. Our findings indicate that NPAC plastics may pose a chemical risk to organisms as 84% of the samples had at least one chemical exceeding sediment threshold effect levels. Furthermore, our surface trawls collected more plastic than biomass (180 times on average), indicating that some NPAC organisms feeding upon floating particles may have plastic as a major component of their diets. If gradients for pollutant transfer from NPAC plastic to predators exist (as indicated by our fugacity ratio calculations), plastics may play a role in transferring chemicals to certain marine organisms.
Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Organismos Aquáticos , Monitoramento Ambiental , Oceano Pacífico , Plásticos , Água do MarRESUMO
Understanding the use behaviours of plastic items within households is important to enable informed policy development, particularly with the emerging and developing global plastic treaty. A survey of 400 permanent residents in Portsmouth aimed to identify the general trends in single-use plastic product (SUPP) use and disposal, and their personal motivations and barriers to reducing and recycling plastic. This included identifying common influencers of attitudes such as environmental values, situational characteristics, psychological factors and the individual demographic characteristics of residents. Key factors in consumer behaviour were found to be product availability, affordability and convenience. Often, less conveniently recycled plastics more frequently end up in landfill such as films, shopping bags and personal care items. The age of respondents was found to be the most significantly associated demographic with SUPP consumption, reuse and recycling behaviours. Other demographic variables such as a resident's location within the city, income and vehicle ownership were potential drivers influencing individual attitudes and their incentives towards reducing and recycling their plastic waste. The findings from this study brought to light the importance of effective local plastic governance. This study also identified consumer perceptions and behaviours that could contribute to future holistic plastic policy recommendations. Supplementary Information: The online version contains supplementary material available at 10.1007/s11625-022-01261-5.
RESUMO
Most studies on buoyant microplastics in the marine environment rely on sea surface sampling. Consequently, microplastic amounts can be underestimated, as turbulence leads to vertical mixing. Models that correct for vertical mixing are based on limited data. In this study we report measurements of the depth profile of buoyant microplastics in the North Atlantic subtropical gyre, from 0 to 5 m depth. Microplastics were separated into size classes (0.5-1.5 and 1.5-5.0 mm) and types ('fragments' and 'lines'), and associated with a sea state. Microplastic concentrations decreased exponentially with depth, with both sea state and particle properties affecting the steepness of the decrease. Concentrations approached zero within 5 m depth, indicating that most buoyant microplastics are present on or near the surface. Plastic rise velocities were also measured, and were found to differ significantly for different sizes and shapes. Our results suggest that (1) surface samplers such as manta trawls underestimate total buoyant microplastic amounts by a factor of 1.04-30.0 and (2) estimations of depth-integrated buoyant plastic concentrations should be done across different particle sizes and types. Our findings can assist with improving buoyant ocean plastic vertical mixing models, mass balance exercises, impact assessments and mitigation strategies.
RESUMO
Rising CO2 concentrations may have large effects on aquatic microorganisms. In this study, we investigated how elevated pCO2 affects the harmful freshwater cyanobacterium Microcystis aeruginosa. This species is capable of producing dense blooms and hepatotoxins called microcystins. Strain PCC 7806 was cultured in chemostats that were shifted from low to high pCO2 conditions. This resulted in a transition from a C-limited to a light-limited steady state, with a ~2.7-fold increase of the cyanobacterial biomass and ~2.5-fold more microcystin per cell. Cells increased their chlorophyll a and phycocyanin content, and raised their PSI/PSII ratio at high pCO2. Surprisingly, cells had a lower dry weight and contained less carbohydrates, which might be an adaptation to improve the buoyancy of Microcystis when light becomes more limiting at high pCO2. Only 234 of the 4691 genes responded to elevated pCO2. For instance, expression of the carboxysome, RuBisCO, photosystem and C metabolism genes did not change significantly, and only a few N assimilation genes were expressed differently. The lack of large-scale changes in the transcriptome could suit a buoyant species that lives in eutrophic lakes with strong CO2 fluctuations very well. However, we found major responses in inorganic carbon uptake. At low pCO2, cells were mainly dependent on bicarbonate uptake, whereas at high pCO2 gene expression of the bicarbonate uptake systems was down-regulated and cells shifted to CO2 and low-affinity bicarbonate uptake. These results show that the need for high-affinity bicarbonate uptake systems ceases at elevated CO2. Moreover, the combination of an increased cyanobacterial abundance, improved buoyancy, and higher toxin content per cell indicates that rising atmospheric CO2 levels may increase the problems associated with the harmful cyanobacterium Microcystis in eutrophic lakes.