Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Methods ; 19(10): 1276-1285, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36138173

RESUMO

Experimental studies of cell growth, inheritance and their associated processes by microscopy require accurate single-cell observations of sufficient duration to reconstruct the genealogy. However, cell tracking-assigning identical cells on consecutive images to a track-is often challenging, resulting in laborious manual verification. Here, we propose fingerprints to identify problematic assignments rapidly. A fingerprint distance compares the structural information contained in the low frequencies of a Fourier transform to measure the similarity between cells in two consecutive images. We show that fingerprints are broadly applicable across cell types and image modalities, provided the image has sufficient structural information. Our tracker (TracX) uses fingerprints to reject unlikely assignments, thereby increasing tracking performance on published and newly generated long-term data sets. For Saccharomyces cerevisiae, we propose a comprehensive model for cell size control at the single-cell and population level centered on the Whi5 regulator, demonstrating how precise tracking can help uncover previously undescribed single-cell biology.


Assuntos
Rastreamento de Células , Humanos
2.
Biophys Rev (Melville) ; 3(2): 021302, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38505412

RESUMO

Live-cell microscopy is a powerful tool that can reveal cellular behavior as well as the underlying molecular processes. A key advantage of microscopy is that by visualizing biological processes, it can provide direct insights. Nevertheless, live-cell imaging can be technically challenging and prone to artifacts. For a successful experiment, many careful decisions are required at all steps from hardware selection to downstream image analysis. Facing these questions can be particularly intimidating due to the requirement for expertise in multiple disciplines, ranging from optics, biophysics, and programming to cell biology. In this review, we aim to summarize the key points that need to be considered when setting up and analyzing a live-cell imaging experiment. While we put a particular focus on yeast, many of the concepts discussed are applicable also to other organisms. In addition, we discuss reporting and data sharing strategies that we think are critical to improve reproducibility in the field.

3.
Nat Commun ; 13(1): 3483, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35732645

RESUMO

The regulation of cell growth has fundamental physiological, biotechnological and medical implications. However, methods that can continuously monitor individual cells at sufficient mass and time resolution hardly exist. Particularly, detecting the mass of individual microbial cells, which are much smaller than mammalian cells, remains challenging. Here, we modify a previously described cell balance ('picobalance') to monitor the proliferation of single cells of the budding yeast, Saccharomyces cerevisiae, under culture conditions in real time. Combined with optical microscopy to monitor the yeast morphology and cell cycle phase, the picobalance approaches a total mass resolution of 0.45 pg. Our results show that single budding yeast cells (S/G2/M phase) increase total mass in multiple linear segments sequentially, switching their growth rates. The growth rates weakly correlate with the cell mass of the growth segments, and the duration of each growth segment correlates negatively with cell mass. We envision that our technology will be useful for direct, accurate monitoring of the growth of single cells throughout their cycle.


Assuntos
Saccharomycetales , Animais , Ciclo Celular/fisiologia , Divisão Celular , Fase G2 , Mamíferos , Saccharomyces cerevisiae/metabolismo
4.
Cell Rep ; 38(3): 110242, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34998467

RESUMO

Characterization of COVID-19 antibodies has largely focused on memory B cells; however, it is the antibody-secreting plasma cells that are directly responsible for the production of serum antibodies, which play a critical role in resolving SARS-CoV-2 infection. Little is known about the specificity of plasma cells, largely because plasma cells lack surface antibody expression, thereby complicating their screening. Here, we describe a technology pipeline that integrates single-cell antibody repertoire sequencing and mammalian display to interrogate the specificity of plasma cells from 16 convalescent patients. Single-cell sequencing allows us to profile antibody repertoire features and identify expanded clonal lineages. Mammalian display screening is used to reveal that 43 antibodies (of 132 candidates) derived from expanded plasma cell lineages are specific to SARS-CoV-2 antigens, including antibodies with high affinity to the SARS-CoV-2 receptor-binding domain (RBD) that exhibit potent neutralization and broad binding to the RBD of SARS-CoV-2 variants (of concern/interest).


Assuntos
Anticorpos Neutralizantes/isolamento & purificação , Plasmócitos/metabolismo , SARS-CoV-2/imunologia , Análise de Célula Única/métodos , Animais , Anticorpos Antivirais/isolamento & purificação , COVID-19/imunologia , COVID-19/prevenção & controle , Células Cultivadas , Estudos de Coortes , Biblioteca Gênica , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mamíferos , Testes de Neutralização , Biblioteca de Peptídeos , Plasmócitos/química
5.
SoftwareX ; 15: 100710, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36568894

RESUMO

Lateral flow Point-Of-Care Tests (POCTs) are a valuable tool for rapidly detecting pathogens and the associated immune response in humans and animals. In the context of the SARS-CoV-2 pandemic, they offer rapid on-site diagnostics and can relieve centralized laboratory testing sites, thus freeing resources that can be focused on especially vulnerable groups. However, visual interpretation of the POCT test lines is subjective, error prone and only qualitative. Here we present pyPOCQuant, an open-source tool implemented in Python 3 that can robustly and reproducibly analyze POCTs from digital images and return an unbiased and quantitative measurement of the POCT test lines.

6.
G3 (Bethesda) ; 10(12): 4373-4385, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33023973

RESUMO

Time-lapse imaging of live cells using multiple fluorescent reporters is an essential tool to study molecular processes in single cells. However, exposure to even moderate doses of visible excitation light can disturb cellular physiology and alter the quantitative behavior of the cells under study. Here, we set out to develop guidelines to avoid the confounding effects of excitation light in multi-color long-term imaging. We use widefield fluorescence microscopy to measure the effect of the administered excitation light on growth rate (here called photomorbidity) in yeast. We find that photomorbidity is determined by the cumulative light dose at each wavelength, but independent of the way excitation light is applied. Importantly, photomorbidity possesses a threshold light dose below which no effect is detectable (NOEL). We found, that the suitability of fluorescent proteins for live-cell imaging at the respective excitation light NOEL is equally determined by the cellular autofluorescence and the fluorescent protein brightness. Last, we show that photomorbidity of multiple wavelengths is additive and imaging conditions absent of photomorbidity can be predicted. Our findings enable researchers to find imaging conditions with minimal impact on physiology and can provide framework for how to approach photomorbidity in other organisms.


Assuntos
Microscopia de Fluorescência , Saccharomyces cerevisiae , Schizosaccharomyces , Cor , Fluorescência , Imagem Óptica , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA