Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 389
Filtrar
1.
Nat Immunol ; 25(3): 537-551, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38337035

RESUMO

A nasally delivered chimpanzee adenoviral-vectored severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine (ChAd-SARS-CoV-2-S) is currently used in India (iNCOVACC). Here, we update this vaccine by creating ChAd-SARS-CoV-2-BA.5-S, which encodes a prefusion-stabilized BA.5 spike protein. Whereas serum neutralizing antibody responses induced by monovalent or bivalent adenoviral vaccines were poor against the antigenically distant XBB.1.5 strain and insufficient to protect in passive transfer experiments, mucosal antibody and cross-reactive memory T cell responses were robust, and protection was evident against WA1/2020 D614G and Omicron variants BQ.1.1 and XBB.1.5 in mice and hamsters. However, depletion of memory CD8+ T cells before XBB.1.5 challenge resulted in loss of protection against upper and lower respiratory tract infection. Thus, nasally delivered vaccines stimulate mucosal immunity against emerging SARS-CoV-2 strains, and cross-reactive memory CD8+ T cells mediate protection against lung infection by antigenically distant strains in the setting of low serum levels of cross-reactive neutralizing antibodies.


Assuntos
COVID-19 , Infecções Respiratórias , Vacinas , Cricetinae , Animais , Camundongos , Linfócitos T CD8-Positivos , SARS-CoV-2 , COVID-19/prevenção & controle , Anticorpos Neutralizantes , Anticorpos Amplamente Neutralizantes , Pan troglodytes
2.
Cell ; 183(1): 169-184.e13, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32931734

RESUMO

The coronavirus disease 2019 pandemic has made deployment of an effective vaccine a global health priority. We evaluated the protective activity of a chimpanzee adenovirus-vectored vaccine encoding a prefusion stabilized spike protein (ChAd-SARS-CoV-2-S) in challenge studies with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and mice expressing the human angiotensin-converting enzyme 2 receptor. Intramuscular dosing of ChAd-SARS-CoV-2-S induces robust systemic humoral and cell-mediated immune responses and protects against lung infection, inflammation, and pathology but does not confer sterilizing immunity, as evidenced by detection of viral RNA and induction of anti-nucleoprotein antibodies after SARS-CoV-2 challenge. In contrast, a single intranasal dose of ChAd-SARS-CoV-2-S induces high levels of neutralizing antibodies, promotes systemic and mucosal immunoglobulin A (IgA) and T cell responses, and almost entirely prevents SARS-CoV-2 infection in both the upper and lower respiratory tracts. Intranasal administration of ChAd-SARS-CoV-2-S is a candidate for preventing SARS-CoV-2 infection and transmission and curtailing pandemic spread.


Assuntos
Infecções por Coronavirus/imunologia , Imunogenicidade da Vacina , Pneumonia Viral/imunologia , Vacinas Virais/imunologia , Adenoviridae/genética , Administração Intranasal , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19 , Vacinas contra COVID-19 , Chlorocebus aethiops , Infecções por Coronavirus/patologia , Infecções por Coronavirus/prevenção & controle , Feminino , Células HEK293 , Humanos , Injeções Intramusculares , Camundongos , Camundongos Endogâmicos BALB C , Pandemias , Pneumonia Viral/patologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/patologia , Mucosa Respiratória/virologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Células Vero , Vacinas Virais/administração & dosagem
4.
Nature ; 592(7853): 195-204, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33828315

RESUMO

The move from reading to writing the human genome offers new opportunities to improve human health. The United States National Institutes of Health (NIH) Somatic Cell Genome Editing (SCGE) Consortium aims to accelerate the development of safer and more-effective methods to edit the genomes of disease-relevant somatic cells in patients, even in tissues that are difficult to reach. Here we discuss the consortium's plans to develop and benchmark approaches to induce and measure genome modifications, and to define downstream functional consequences of genome editing within human cells. Central to this effort is a rigorous and innovative approach that requires validation of the technology through third-party testing in small and large animals. New genome editors, delivery technologies and methods for tracking edited cells in vivo, as well as newly developed animal models and human biological systems, will be assembled-along with validated datasets-into an SCGE Toolkit, which will be disseminated widely to the biomedical research community. We visualize this toolkit-and the knowledge generated by its applications-as a means to accelerate the clinical development of new therapies for a wide range of conditions.


Assuntos
Células/metabolismo , Edição de Genes/métodos , Genoma Humano/genética , National Institutes of Health (U.S.)/organização & administração , Animais , Terapia Genética , Objetivos , Humanos , Estados Unidos
5.
Am J Hum Genet ; 109(11): 2068-2079, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36283405

RESUMO

Non-centrosomal microtubules are essential cytoskeletal filaments that are important for neurite formation, axonal transport, and neuronal migration. They require stabilization by microtubule minus-end-targeting proteins including the CAMSAP family of molecules. Using exome sequencing on samples from five unrelated families, we show that bi-allelic CAMSAP1 loss-of-function variants cause a clinically recognizable, syndromic neuronal migration disorder. The cardinal clinical features of the syndrome include a characteristic craniofacial appearance, primary microcephaly, severe neurodevelopmental delay, cortical visual impairment, and seizures. The neuroradiological phenotype comprises a highly recognizable combination of classic lissencephaly with a posterior more severe than anterior gradient similar to PAFAH1B1(LIS1)-related lissencephaly and severe hypoplasia or absence of the corpus callosum; dysplasia of the basal ganglia, hippocampus, and midbrain; and cerebellar hypodysplasia, similar to the tubulinopathies, a group of monogenic tubulin-associated disorders of cortical dysgenesis. Neural cell rosette lineages derived from affected individuals displayed findings consistent with these phenotypes, including abnormal morphology, decreased cell proliferation, and neuronal differentiation. Camsap1-null mice displayed increased perinatal mortality, and RNAScope studies identified high expression levels in the brain throughout neurogenesis and in facial structures, consistent with the mouse and human neurodevelopmental and craniofacial phenotypes. Together our findings confirm a fundamental role of CAMSAP1 in neuronal migration and brain development and define bi-allelic variants as a cause of a clinically distinct neurodevelopmental disorder in humans and mice.


Assuntos
Lissencefalias Clássicas e Heterotopias Subcorticais em Banda , Lisencefalia , Malformações do Sistema Nervoso , Humanos , Animais , Camundongos , Lisencefalia/genética , Alelos , Tubulina (Proteína)/genética , Fenótipo , Malformações do Sistema Nervoso/genética , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/genética , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética
6.
Mol Ther ; 31(9): 2600-2611, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37452494

RESUMO

B cells are the antibody-producing arm of the adaptive immune system and play a critical role in controlling pathogens. Several groups have now demonstrated the feasibility of using engineered B cells as a therapy, including infectious disease control and gene therapy of serum deficiencies. These studies have largely utilized ex vivo modification of the cells. Direct in vivo engineering would be of utility to the field, particularly in infectious disease control where the infrastructure needs of ex vivo cell modification would make a broad vaccination campaign highly challenging. In this study we demonstrate that engineered adenoviral vectors are capable of efficiently transducing murine and human primary B cells both ex vivo and in vivo. We found that unmodified human adenovirus C5 was capable of infecting B cells in vivo, likely due to interactions between the virus penton base protein and integrins. We further describe vector modification with B cell-specific gene promoters and successfully restrict transgene expression to B cells, resulting in a strong reduction in gene expression from the liver, the main site of human adenovirus C5 infection in vivo.


Assuntos
Adenoviridae , Doenças Transmissíveis , Camundongos , Humanos , Animais , Adenoviridae/genética , Vetores Genéticos/genética , Terapia Genética/métodos , Proteínas Virais/genética , Linfócitos B
7.
J Immunol ; 207(3): 755-764, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34321286

RESUMO

Recent developments in genome editing and delivery systems have opened new possibilities for B cell gene therapy. CRISPR-Cas9 nucleases have been used to introduce transgenes into B cell genomes for subsequent secretion of exogenous therapeutic proteins from plasma cells and to program novel B cell Ag receptor specificities, allowing for the generation of desirable Ab responses that cannot normally be elicited in animal models. Genome modification of B cells or their progenitor, hematopoietic stem cells, could potentially substitute Ab or protein replacement therapies that require multiple injections over the long term. To date, B cell editing using CRISPR-Cas9 has been solely employed in preclinical studies, in which cells are edited ex vivo. In this review, we discuss current B cell engineering efforts and strategies for the eventual safe and economical adoption of modified B cells into the clinic, including in vivo viral delivery of editing reagents to B cells.


Assuntos
Linfócitos B/fisiologia , Terapia Genética/tendências , Receptores de Antígenos de Linfócitos B/genética , Animais , Anticorpos/genética , Anticorpos/metabolismo , Sistemas CRISPR-Cas , Epitopos , Engenharia Genética , Humanos , Imunoterapia
8.
Int J Mol Sci ; 24(12)2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37373140

RESUMO

More than one million women are diagnosed annually worldwide with a gynecological cancer. Most gynecological cancers are diagnosed at a late stage, either because a lack of symptoms, such as in ovarian cancer or limited accessibility to primary prevention in low-resource countries, such as in cervical cancer. Here, we extend the studies of AR2011, a stroma-targeted and tumor microenvironment responsive oncolytic adenovirus (OAdV), whose replication is driven by a triple hybrid promoter. We show that AR2011 was able to replicate and lyse in vitro fresh explants obtained from human ovarian cancer, uterine cancer, and cervical cancer. AR2011 was also able to strongly inhibit the in vitro growth of ovarian malignant cells obtained from human ascites fluid. The virus could synergize in vitro with cisplatin even on ascites-derived cells obtained from patients heavily pretreated with neoadjuvant chemotherapy. AR2011(h404), a dual transcriptionally targeted derived virus armed with hCD40L and h41BBL under the regulation of the hTERT promoter, showed a strong efficacy in vivo both on subcutaneous and intraperitoneally established human ovarian cancer in nude mice. Preliminary studies in an immunocompetent murine tumor model showed that AR2011(m404) expressing the murine cytokines was able to induce an abscopal effect. The present studies suggest that AR2011(h404) is a likely candidate as a novel medicine for intraperitoneal disseminated ovarian cancer.


Assuntos
Infecções por Adenoviridae , Terapia Viral Oncolítica , Vírus Oncolíticos , Neoplasias Ovarianas , Neoplasias do Colo do Útero , Feminino , Humanos , Camundongos , Animais , Adenoviridae/genética , Ascite , Camundongos Nus , Microambiente Tumoral , Linhagem Celular Tumoral , Neoplasias Ovarianas/terapia , Neoplasias Ovarianas/tratamento farmacológico , Vírus Oncolíticos/genética , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Lancet Oncol ; 22(8): 1103-1114, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34214495

RESUMO

BACKGROUND: Malignant glioma is the most common and lethal primary brain tumour, with dismal survival rates and no effective treatment. We examined the safety and activity of NSC-CRAd-S-pk7, an engineered oncolytic adenovirus delivered by neural stem cells (NSCs), in patients with newly diagnosed high-grade glioma. METHODS: This was a first-in-human, open-label, phase 1, dose-escalation trial done to determine the maximal tolerated dose of NSC-CRAd-S-pk7, following a 3 + 3 design. Patients with newly diagnosed, histologically confirmed, high-grade gliomas (WHO grade III or IV) were recruited. After neurosurgical resection, NSC-CRAd-S-pk7 was injected into the walls of the resection cavity. The first patient cohort received a dose starting at 6·25 × 1010 viral particles administered by 5·00 × 107 NSCs, the second cohort a dose of 1·25 × 1011 viral particles administered by 1·00 × 108 NSCs, and the third cohort a dose of 1·875 × 1011 viral particles administered by 1·50 × 108 NSCs. No further dose escalation was planned. Within 10-14 days, treatment with temozolomide and radiotherapy was initiated. Primary endpoints were safety and toxicity profile and the maximum tolerated dose for a future phase 2 trial. All analyses were done in all patients who were included in the trial and received the study treatment and were not excluded from the study. Recruitment is complete and the trial is finished. The trial is registered with ClinicalTrials.gov, NCT03072134. FINDINGS: Between April 24, 2017, and Nov 13, 2019, 12 patients with newly diagnosed, malignant gliomas were recruited and included in the safety analysis. Histopathological evaluation identified 11 (92%) of 12 patients with glioblastoma and one (8%) of 12 patients with anaplastic astrocytoma. The median follow-up was 18 months (IQR 14-22). One patient receiving 1·50 × 108 NSCs loading 1·875 × 1011 viral particles developed viral meningitis (grade 3) due to the inadvertent injection of NSC-CRAd-S-pk7 into the lateral ventricle. Otherwise, treatment was safe as no formal dose-limiting toxicity was reached, so 1·50 × 108 NSCs loading 1·875 × 1011 viral particles was recommended as a phase 2 trial dose. There were no treatment-related deaths. The median progression-free survival was 9·1 months (95% CI 8·5-not reached) and median overall survival was 18·4 months (15·7-not reached). INTERPRETATION: NSC-CRAd-S-pk7 treatment was feasible and safe. Our immunological and histopathological findings support continued investigation of NSC-CRAd-S-pk7 in a phase 2/3 clinical trial. FUNDING: US National Institutes of Health.


Assuntos
Neoplasias Encefálicas/terapia , Glioma/terapia , Células-Tronco Neurais/transplante , Terapia Viral Oncolítica/métodos , Adenoviridae , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Vírus Oncolíticos
10.
J Virol ; 94(10)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32102889

RESUMO

Human adenoviruses have many attractive features for gene therapy applications. However, the high prevalence of preexisting immunity against these viruses in general populations worldwide has greatly limited their clinical utility. In addition, the most commonly used human adenovirus, human adenovirus subgroup C serotype 5 (HAd5), when systemically administered, triggers systemic inflammation and toxicity, with the liver being the most severely affected organ. Here, we evaluated the utility and safety of a new low-seroprevalence gorilla adenovirus (GAd; GC46) as a gene transfer vector in mice. Biodistribution studies revealed that systemically administered GAd had a selective and robust lung endothelial cell (EC) tropism with minimal vector expression throughout many other organs and tissues. Administration of a high dose of GAd accomplished extensive transgene expression in the lung yet elicited no detectable inflammatory histopathology in this organ. Furthermore, GAd, unlike HAd5, did not exhibit hepatotropism or induce liver inflammatory toxicity in mice, demonstrating the exceptional safety profile of the vector vis-à-vis systemic utility. We further demonstrated that the GAd capsid fiber shared the flexibility of the HAd5 equivalent for permitting genetic modification; GAd with the pan-EC-targeting ligand myeloid cell-binding peptide (MBP) incorporated in the capsid displayed a reduced lung tropism and efficiently retargeted gene expression to vascular beds in other organs.IMPORTANCE In the aggregate, our mouse studies suggest that GAd is a promising gene therapy vector that utilizes lung ECs as a source of therapeutic payload production and a highly desirable toxicity profile. Further genetic engineering of the GAd capsid holds the promise of in vivo vector tropism modification and targeting.


Assuntos
Adenoviridae/genética , Capsídeo/metabolismo , Vetores Genéticos , Gorilla gorilla/virologia , Pulmão/metabolismo , Tropismo/imunologia , Infecções por Adenoviridae/patologia , Infecções por Adenoviridae/virologia , Adenovírus Humanos/genética , Animais , Proteínas do Capsídeo/genética , Células Endoteliais , Expressão Gênica , Terapia Genética , Fígado , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos C57BL , Estudos Soroepidemiológicos , Transdução Genética , Transgenes , Vírion
11.
J Inherit Metab Dis ; 44(5): 1088-1098, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34189746

RESUMO

Mucopolysaccharidoses type I (MPS I) is an inherited metabolic disease characterized by a malfunction of the α-l-iduronidase (IDUA) enzyme leading to the storage of glycosaminoglycans in the lysosomes. This disease has longtime been studied as a therapeutic target for those studying gene therapy and many studies have been done using various vectors to deliver the IDUA gene for corrective treatment. Many vectors have difficulties with efficacy and insertional mutagenesis concerns including adeno-associated viral (AAV) vectors. Studies of AAV vectors treating MPS I have seemed promising, but recent deaths in gene therapy clinical trials for other inherited diseases using AAV vectors have left questions about their safety. Additionally, the recent modifications to adenoviral vectors leading them to target the vascular endothelium minimizing the risk of hepatotoxicity could lead to them being a viable option for MPS I gene therapy when coupled with gene editing technologies like CRISPR/Cas9.


Assuntos
Edição de Genes/métodos , Terapia Genética/métodos , Iduronidase/genética , Mucopolissacaridose I/terapia , Animais , Sistemas CRISPR-Cas , Dependovirus/genética , Modelos Animais de Doenças , Expressão Gênica , Vetores Genéticos/genética , Glicosaminoglicanos/urina , Humanos , Iduronidase/análise , Iduronidase/metabolismo , Mucopolissacaridose I/patologia
12.
Am J Respir Cell Mol Biol ; 63(5): 560-570, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32668173

RESUMO

AAT (alpha-1 antitrypsin) deficiency (AATD), characterized by low levels of circulating serine protease inhibitor AAT, results in emphysematous destruction of the lung. Inherited serum deficiency disorders, such as hemophilia and AATD, have been considered ideal candidates for gene therapy. Although viral vector-meditated transduction of the liver has demonstrated utility in hemophilia, similar success has not been achieved for AATD. The challenge for AAT gene therapy is achieving protective levels of AAT locally in the lung and mitigating potential liver toxicities linked to systemically administered viral vectors. Current strategies with ongoing clinical trials involve different routes of adeno-associated virus administrations, such as intramuscular and intrapleural injections, to provide consistent therapeutic levels from nonhepatic organ sites. Nevertheless, exploration of alternative methods of nonhepatic sourcing of AAT has been of great interest in the field. In this regard, pulmonary endothelium-targeted adenovirus vector could be a key technical mandate to achieve local augmentation of AAT within the lower respiratory tract, with the potential benefit of circumventing liver toxicities. In addition, incorporation of the CRISPR/Cas9 (CRISPR-associated protein 9) nuclease system into gene-delivery technologies has provided adjunctive technologies that could fully realize a one-time treatment for sustained, lifelong expression of AAT in patients with AATD. This review will focus on the adeno-associated virus- and adenoviral vector-mediated gene therapy strategies for the pulmonary manifestations of AATD and show that endeavoring to use genome-editing techniques will advance the current strategy to one fully compatible with direct human translation.


Assuntos
Terapia Genética , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/uso terapêutico , Animais , Dependovirus/genética , Edição de Genes , Humanos , Deficiência de alfa 1-Antitripsina/genética , Deficiência de alfa 1-Antitripsina/terapia
13.
Proc Natl Acad Sci U S A ; 114(5): 1117-1122, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28096371

RESUMO

In recent years, it has been established that programmed cell death protein ligand 1 (PD-L1)-mediated inhibition of activated PD-1+ T lymphocytes plays a major role in tumor escape from immune system during cancer progression. Lately, the anti-PD-L1 and -PD-1 immune therapies have become an important tool for treatment of advanced human cancers, including bladder cancer. However, the underlying mechanisms of PD-L1 expression in cancer are not fully understood. We found that coculture of murine bone marrow cells with bladder tumor cells promoted strong expression of PD-L1 in bone marrow-derived myeloid cells. Tumor-induced expression of PD-L1 was limited to F4/80+ macrophages and Ly-6C+ myeloid-derived suppressor cells. These PD-L1-expressing cells were immunosuppressive and were capable of eliminating CD8 T cells in vitro. Tumor-infiltrating PD-L1+ cells isolated from tumor-bearing mice also exerted morphology of tumor-associated macrophages and expressed high levels of prostaglandin E2 (PGE2)-forming enzymes microsomal PGE2 synthase 1 (mPGES1) and COX2. Inhibition of PGE2 formation, using pharmacologic mPGES1 and COX2 inhibitors or genetic overexpression of PGE2-degrading enzyme 15-hydroxyprostaglandin dehydrogenase (15-PGDH), resulted in reduced PD-L1 expression. Together, our study demonstrates that the COX2/mPGES1/PGE2 pathway involved in the regulation of PD-L1 expression in tumor-infiltrating myeloid cells and, therefore, reprogramming of PGE2 metabolism in tumor microenvironment provides an opportunity to reduce immune suppression in tumor host.


Assuntos
Antígeno B7-H1/biossíntese , Células da Medula Óssea/metabolismo , Ciclo-Oxigenase 2/fisiologia , Dinoprostona/fisiologia , Macrófagos/metabolismo , Células Supressoras Mieloides/metabolismo , Prostaglandina-E Sintases/fisiologia , Animais , Antígeno B7-H1/genética , Comunicação Celular , Linhagem Celular Tumoral , Técnicas de Cocultura , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Hidroxiprostaglandina Desidrogenases/biossíntese , Hidroxiprostaglandina Desidrogenases/genética , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos NOD , Camundongos SCID , Antagonistas de Prostaglandina/farmacologia , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/patologia
15.
Gene Ther ; 25(2): 139-156, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29588497

RESUMO

Serum deficiency diseases such as alpha-1-antitrypsin deficiency are characterized by reduced function of serum proteins, caused by deleterious genetic mutations. These diseases are promising targets for genetic interventions. Gene therapies using viral vectors have been used to introduce correct copies of the disease-causing gene in preclinical and clinical studies. However, these studies highlighted that disease-alleviating gene expression is lost over time. Integration into a specific chromosomal site could provide lasting therapeutic expression to overcome this major limitation. Additionally, targeted integration could avoid detrimental mutagenesis associated with integrative vectors, such as tumorigenesis or functional gene perturbation. To test if adenoviral vectors can facilitate long-term gene expression through targeted integration, we somatically incorporated the human alpha-1-antitrypsin gene into the ROSA26 "safe harbor" locus in murine livers, using CRISPR/Cas9. We found adenoviral-mediated delivery of CRISPR/Cas9 achieved gene editing outcomes persisting over 200 days. Furthermore, gene knock-in maintained greater levels of the serum protein than provided by episomal expression. Importantly, our "knock-in" approach is generalizable to other serum proteins and supports in vivo cDNA replacement therapy to achieve stable gene expression.


Assuntos
Adenoviridae/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA Complementar/genética , Técnicas de Introdução de Genes , alfa 1-Antitripsina/genética , Animais , Edição de Genes , Expressão Gênica , Terapia Genética , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Células HEK293 , Humanos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Recombinação Genética , Integração Viral , Deficiência de alfa 1-Antitripsina/genética
16.
Mol Pharm ; 15(12): 5446-5453, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30359030

RESUMO

The adenovirus (Ad) is widely used as a vaccine because of its ability to induce a cellular and humoral immune response. In addition, human clinical trials have validated the safety and efficacy of Ad as a vaccine vector. The traditional approach for employing the adenovirus as vaccine is to configure the antigen genes into the expression cassette of the Ad genome. An alternative method for inducing an immune response is the "capsid-incorporation" strategy. This strategy is based upon the incorporation of proteins or peptides into the capsid proteins. This review will focus on the established uses of this approach as well as highlighting the new developments regarding the capsid-incorporation strategy.


Assuntos
Adenoviridae/imunologia , Antígenos Virais/imunologia , Proteínas do Nucleocapsídeo/imunologia , Vacinas Virais/imunologia , Adenoviridae/genética , Animais , Antígenos Virais/genética , Capsídeo/imunologia , Ensaios Clínicos como Assunto , Vetores Genéticos/imunologia , Humanos , Proteínas do Nucleocapsídeo/genética , Engenharia de Proteínas/métodos , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas Virais/genética
17.
J Immunol ; 197(7): 2748-61, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27574299

RESUMO

An ideal malaria vaccine should target several stages of the parasite life cycle and induce antiparasite and antidisease immunity. We have reported a Plasmodium yoelii chimeric multistage recombinant protein (P. yoelii linear peptide chimera/recombinant modular chimera), engineered to express several autologous T cell epitopes and sequences derived from the circumsporozoite protein and the merozoite surface protein 1. This chimeric protein elicits protective immunity, mediated by CD4(+) T cells and neutralizing Abs. However, experimental evidence, from pre-erythrocytic vaccine candidates and irradiated sporozoites, has shown that CD8(+) T cells play a significant role in protection. Recombinant viral vectors have been used as a vaccine platform to elicit effective CD8(+) T cell responses. The human adenovirus (Ad) serotype 5 has been tested in malaria vaccine clinical trials with excellent safety profile. Nevertheless, a major concern for the use of Ad5 is the high prevalence of anti-vector neutralizing Abs in humans, hampering its immunogenicity. To minimize the impact of anti-vector pre-existing immunity, we developed a chimeric Ad5/3 vector in which the knob region of Ad5 was replaced with that of Ad3, conferring partial resistance to anti-Ad5 neutralizing Abs. Furthermore, we implemented heterologous Ad/protein immunization regimens that include a single immunization with recombinant Ad vectors. Our data show that immunization with the recombinant Ad5/3 vector induces protective efficacy indistinguishable from that elicited by Ad5. Our study also demonstrates that the dose of the Ad vectors has an impact on the memory profile and protective efficacy. The results support further studies with Ad5/3 for malaria vaccine development.


Assuntos
Adenovírus Humanos/genética , Antígenos de Protozoários/imunologia , Linfócitos T CD8-Positivos/imunologia , Vetores Genéticos/genética , Imunidade Celular/imunologia , Vacinas Antimaláricas/imunologia , Plasmodium yoelii/imunologia , Animais , Antígenos de Protozoários/genética , Feminino , Células HEK293 , Humanos , Vacinas Antimaláricas/genética , Camundongos , Camundongos Transgênicos , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia
18.
Am J Respir Cell Mol Biol ; 55(5): 716-721, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27374344

RESUMO

Mutations in the ATP-binding cassette transporter A3 gene (ABCA3) result in severe neonatal respiratory distress syndrome and childhood interstitial lung disease. As most ABCA3 mutations are rare or private, determination of mutation pathogenicity is often based on results from in silico prediction tools, identification in unrelated diseased individuals, statistical association studies, or expert opinion. Functional biologic studies of ABCA3 mutations are needed to confirm mutation pathogenicity and inform clinical decision making. Our objective was to functionally characterize two ABCA3 mutations (p.R288K and p.R1474W) identified among term and late-preterm infants with respiratory distress syndrome with unclear pathogenicity in a genetically versatile model system. We performed transient transfection of HEK293T cells with wild-type or mutant ABCA3 alleles to assess protein processing with immunoblotting. We used transduction of A549 cells with adenoviral vectors, which concurrently silenced endogenous ABCA3 and expressed either wild-type or mutant ABCA3 alleles (p.R288K and p.R1474W) to assess immunofluorescent localization, ATPase activity, and organelle ultrastructure. Both ABCA3 mutations (p.R288K and p.R1474W) encoded proteins with reduced ATPase activity but with normal intracellular localization and protein processing. Ultrastructural phenotypes of lamellar body-like vesicles in A549 cells transduced with mutant alleles were similar to wild type. Mutant proteins encoded by ABCA3 mutations p.R288K and p.R1474W had reduced ATPase activity, a biologically plausible explanation for disruption of surfactant metabolism by impaired phospholipid transport into the lamellar body. These results also demonstrate the usefulness of a genetically versatile, human model system for functional characterization of ABCA3 mutations with unclear pathogenicity.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Mutação/genética , Síndrome do Desconforto Respiratório do Recém-Nascido/genética , Células A549 , Adenosina Trifosfatases/metabolismo , Adenoviridae/metabolismo , Imunofluorescência , Células HEK293 , Humanos , Immunoblotting , Lactente , Proteínas Mutantes/metabolismo , Organelas/metabolismo , Organelas/ultraestrutura , Frações Subcelulares/metabolismo
19.
J Gene Med ; 18(1-3): 38-44, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26825735

RESUMO

BACKGROUND: Gene therapy for inherited serum deficiency disorders has previously been limited by the balance between obtaining adequate expression and causing hepatic toxicity. Our group has previously described modifications of a replication deficient human adenovirus serotype 5 that increase pulmonary vasculature transgene expression. METHODS: In the present study, we use a modified pulmonary targeted adenovirus to express human alpha-1 antitrypsin (A1AT) in C57BL/6 J mice. RESULTS: Using the targeted adenovirus, we were able to achieve similar increases in serum A1AT levels with less liver viral uptake. We also increased pulmonary epithelial lining fluid A1AT levels by more than an order of magnitude compared to that of untargeted adenovirus expressing A1AT in a mouse model. These gains are achieved along with evidence of decreased systemic inflammation and no evidence for increased inflammation within the vector-targeted end organ. CONCLUSIONS: In addition to comprising a step towards clinically viable gene therapy for A1AT, maximization of protein production at the site of action represents a significant technical advancement in the field of systemically delivered pulmonary targeted gene therapy. It also provides an alternative to the previous limitations of hepatic viral transduction and associated toxicities.


Assuntos
Endotélio Vascular/metabolismo , Marcação de Genes/métodos , Terapia Genética/métodos , Pulmão/irrigação sanguínea , Deficiência de alfa 1-Antitripsina/terapia , alfa 1-Antitripsina/genética , Adenovírus Humanos , Animais , Modelos Animais de Doenças , Feminino , Marcação de Genes/efeitos adversos , Técnicas de Transferência de Genes/efeitos adversos , Vetores Genéticos/efeitos adversos , Células HEK293 , Humanos , Inflamação/etiologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transgenes , alfa 1-Antitripsina/sangue
20.
Infect Immun ; 83(1): 286-91, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25368111

RESUMO

Hemolytic-uremic syndrome (HUS), caused by Shiga toxin (Stx)-producing Escherichia coli (STEC), remains untreatable. Production of human monoclonal antibodies against Stx, which are highly effective in preventing Stx sequelae in animal models, is languishing due to cost and logistics. We reported previously that the production and evaluation of a camelid heavy-chain-only VH domain (VHH)-based neutralizing agent (VNA) targeting Stx1 and Stx2 (VNA-Stx) protected mice from Stx1 and Stx2 intoxication. Here we report that a single intramuscular (i.m.) injection of a nonreplicating adenovirus (Ad) vector carrying a secretory transgene of VNA-Stx (Ad/VNA-Stx) protected mice challenged with Stx2 and protected gnotobiotic piglets infected with STEC from fatal systemic intoxication. One i.m. dose of Ad/VNA-Stx prevented fatal central nervous system (CNS) symptoms in 9 of 10 animals when it was given to piglets 24 h after bacterial challenge and in 5 of 9 animals when it was given 48 h after bacterial challenge, just prior to the onset of CNS symptoms. All 6 placebo animals died or were euthanized with severe CNS symptoms. Ad/VNA-Stx treatment had no impact on diarrhea. In conclusion, Ad/VNA-Stx treatment is effective in protecting piglets from fatal Stx2-mediated CNS complications following STEC challenge. With a low production cost and further development, this could presumably be an effective treatment for patients with HUS and/or individuals at high risk of developing HUS due to exposure to STEC.


Assuntos
Adenovírus Humanos/genética , Anticorpos Neutralizantes/uso terapêutico , Infecções por Escherichia coli/tratamento farmacológico , Escherichia coli O157/imunologia , Síndrome Hemolítico-Urêmica/tratamento farmacológico , Toxina Shiga I/antagonistas & inibidores , Toxina Shiga II/antagonistas & inibidores , Animais , Anticorpos Neutralizantes/genética , Modelos Animais de Doenças , Portadores de Fármacos/administração & dosagem , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/microbiologia , Escherichia coli O157/genética , Feminino , Vetores Genéticos , Síndrome Hemolítico-Urêmica/imunologia , Síndrome Hemolítico-Urêmica/microbiologia , Injeções Intramusculares , Camundongos , Toxina Shiga I/imunologia , Toxina Shiga II/imunologia , Análise de Sobrevida , Suínos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA