Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(38): 10053-10058, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28874585

RESUMO

During springtime, the Arctic atmospheric boundary layer undergoes frequent rapid depletions in ozone and gaseous elemental mercury due to reactions with halogen atoms, influencing atmospheric composition and pollutant fate. Although bromine chemistry has been shown to initiate ozone depletion events, and it has long been hypothesized that iodine chemistry may contribute, no previous measurements of molecular iodine (I2) have been reported in the Arctic. Iodine chemistry also contributes to atmospheric new particle formation and therefore cloud properties and radiative forcing. Here we present Arctic atmospheric I2 and snowpack iodide (I-) measurements, which were conducted near Utqiagvik, AK, in February 2014. Using chemical ionization mass spectrometry, I2 was observed in the atmosphere at mole ratios of 0.3-1.0 ppt, and in the snowpack interstitial air at mole ratios up to 22 ppt under natural sunlit conditions and up to 35 ppt when the snowpack surface was artificially irradiated, suggesting a photochemical production mechanism. Further, snow meltwater I- measurements showed enrichments of up to ∼1,900 times above the seawater ratio of I-/Na+, consistent with iodine activation and recycling. Modeling shows that observed I2 levels are able to significantly increase ozone depletion rates, while also producing iodine monoxide (IO) at levels recently observed in the Arctic. These results emphasize the significance of iodine chemistry and the role of snowpack photochemistry in Arctic atmospheric composition, and imply that I2 is likely a dominant source of iodine atoms in the Arctic.

2.
Environ Sci Technol ; 50(22): 12394-12400, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27768281

RESUMO

During springtime, unique halogen chemistry involving chlorine and bromine atoms controls the prevalence of volatile organic compounds, ozone, and mercury in the Arctic lower troposphere. In situ measurements of the chlorine monoxide radical, ClO, and its precursor, Cl2, along with BrO and Br2, were conducted using chemical ionization mass spectrometry (CIMS) during the Bromine, Ozone, and Mercury Experiment (BROMEX) near Barrow, Alaska, in March 2012. To our knowledge, these data represent the first ClO measurements made using CIMS. A maximum daytime ClO concentration of 28 ppt was observed following an early morning peak of 75 ppt of Cl2. A zero-dimensional photochemistry model was constrained to Cl2 observations and used to simulate ClO during a 7-day period of the field campaign. The model simulates ClO within the measurement uncertainty, and the model results highlight the importance of chlorine chemistry participation in bromine radical cycling, as well as the dependence of halogen chemistry on NOx levels. The ClO measurements and simulations are consistent with Cl2 being the dominant Cl atom source in the Arctic boundary layer. Simulated Cl atom concentrations, up to ∼1 × 106 molecules cm-3, highlight the importance of chlorine chemistry in the degradation of volatile organic compounds, including the greenhouse gas methane.


Assuntos
Atmosfera , Cloro/química , Ozônio/química , Regiões Árticas , Bromo/química , Halogênios/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA