Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 519
Filtrar
1.
Cell ; 176(3): 564-580.e19, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30580964

RESUMO

There are still gaps in our understanding of the complex processes by which p53 suppresses tumorigenesis. Here we describe a novel role for p53 in suppressing the mevalonate pathway, which is responsible for biosynthesis of cholesterol and nonsterol isoprenoids. p53 blocks activation of SREBP-2, the master transcriptional regulator of this pathway, by transcriptionally inducing the ABCA1 cholesterol transporter gene. A mouse model of liver cancer reveals that downregulation of mevalonate pathway gene expression by p53 occurs in premalignant hepatocytes, when p53 is needed to actively suppress tumorigenesis. Furthermore, pharmacological or RNAi inhibition of the mevalonate pathway restricts the development of murine hepatocellular carcinomas driven by p53 loss. Like p53 loss, ablation of ABCA1 promotes murine liver tumorigenesis and is associated with increased SREBP-2 maturation. Our findings demonstrate that repression of the mevalonate pathway is a crucial component of p53-mediated liver tumor suppression and outline the mechanism by which this occurs.


Assuntos
Ácido Mevalônico/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Linhagem Celular , Colesterol/metabolismo , Feminino , Genes Supressores de Tumor , Células HCT116 , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/genética , Regiões Promotoras Genéticas , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Terpenos/metabolismo
2.
Genes Dev ; 34(7-8): 526-543, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32079652

RESUMO

MDM2 and MDMX, negative regulators of the tumor suppressor p53, can work separately and as a heteromeric complex to restrain p53's functions. MDM2 also has pro-oncogenic roles in cells, tissues, and animals that are independent of p53. There is less information available about p53-independent roles of MDMX or the MDM2-MDMX complex. We found that MDM2 and MDMX facilitate ferroptosis in cells with or without p53. Using small molecules, RNA interference reagents, and mutant forms of MDMX, we found that MDM2 and MDMX, likely working in part as a complex, normally facilitate ferroptotic death. We observed that MDM2 and MDMX alter the lipid profile of cells to favor ferroptosis. Inhibition of MDM2 or MDMX leads to increased levels of FSP1 protein and a consequent increase in the levels of coenzyme Q10, an endogenous lipophilic antioxidant. This suggests that MDM2 and MDMX normally prevent cells from mounting an adequate defense against lipid peroxidation and thereby promote ferroptosis. Moreover, we found that PPARα activity is essential for MDM2 and MDMX to promote ferroptosis, suggesting that the MDM2-MDMX complex regulates lipids through altering PPARα activity. These findings reveal the complexity of cellular responses to MDM2 and MDMX and suggest that MDM2-MDMX inhibition might be useful for preventing degenerative diseases involving ferroptosis. Furthermore, they suggest that MDM2/MDMX amplification may predict sensitivity of some cancers to ferroptosis inducers.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ferroptose/genética , Metabolismo dos Lipídeos/genética , PPAR alfa/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Proteínas de Ciclo Celular/genética , Glioblastoma/fisiopatologia , Células HCT116 , Humanos , Mutação , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/genética , Interferência de RNA , Ratos , Proteína Supressora de Tumor p53/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo
3.
EMBO J ; 42(10): e112234, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36970857

RESUMO

The interferon-induced transmembrane proteins (IFITM) are implicated in several biological processes, including antiviral defense, but their modes of action remain debated. Here, taking advantage of pseudotyped viral entry assays and replicating viruses, we uncover the requirement of host co-factors for endosomal antiviral inhibition through high-throughput proteomics and lipidomics in cellular models of IFITM restriction. Unlike plasma membrane (PM)-localized IFITM restriction that targets infectious SARS-CoV2 and other PM-fusing viral envelopes, inhibition of endosomal viral entry depends on lysines within the conserved IFITM intracellular loop. These residues recruit Phosphatidylinositol 3,4,5-trisphosphate (PIP3) that we show here to be required for endosomal IFITM activity. We identify PIP3 as an interferon-inducible phospholipid that acts as a rheostat for endosomal antiviral immunity. PIP3 levels correlated with the potency of endosomal IFITM restriction and exogenous PIP3 enhanced inhibition of endocytic viruses, including the recent SARS-CoV2 Omicron variant. Together, our results identify PIP3 as a critical regulator of endosomal IFITM restriction linking it to the Pi3K/Akt/mTORC pathway and elucidate cell-compartment-specific antiviral mechanisms with potential relevance for the development of broadly acting antiviral strategies.


Assuntos
Antivirais , COVID-19 , Humanos , Interferons/metabolismo , Fosfolipídeos , Fosfatidilinositol 3-Quinases/metabolismo , RNA Viral , Proteínas de Ligação a RNA/metabolismo , SARS-CoV-2/metabolismo , Internalização do Vírus , Proteínas de Membrana/metabolismo
4.
Nature ; 591(7848): 117-123, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33442062

RESUMO

The activation of mostly quiescent haematopoietic stem cells (HSCs) is a prerequisite for life-long production of blood cells1. This process requires major molecular adaptations to allow HSCs to meet the regulatory and metabolic requirements for cell division2-4. The mechanisms that govern cellular reprograming upon stem-cell activation, and the subsequent return of stem cells to quiescence, have not been fully characterized. Here we show that chaperone-mediated autophagy (CMA)5, a selective form of lysosomal protein degradation, is involved in sustaining HSC function in adult mice. CMA is required for protein quality control in stem cells and for the upregulation of fatty acid metabolism upon HSC activation. We find that CMA activity in HSCs decreases with age and show that genetic or pharmacological activation of CMA can restore the functionality of old mouse and human HSCs. Together, our findings provide mechanistic insights into a role for CMA in sustaining quality control, appropriate energetics and overall long-term HSC function. Our work suggests that CMA may be a promising therapeutic target for enhancing HSC function in conditions such as ageing or stem-cell transplantation.


Assuntos
Autofagia Mediada por Chaperonas/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Adulto , Idoso , Envelhecimento , Animais , Autorrenovação Celular , Células Cultivadas , Autofagia Mediada por Chaperonas/efeitos dos fármacos , Autofagia Mediada por Chaperonas/genética , Metabolismo Energético , Feminino , Glicólise , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Ácido Linoleico/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Mieloma Múltiplo/patologia , Rejuvenescimento , Adulto Jovem
5.
Nature ; 590(7846): 457-462, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33568812

RESUMO

In contrast to nearly all other tissues, the anatomy of cell differentiation in the bone marrow remains unknown. This is owing to a lack of strategies for examining myelopoiesis-the differentiation of myeloid progenitors into a large variety of innate immune cells-in situ in the bone marrow. Such strategies are required to understand differentiation and lineage-commitment decisions, and to define how spatial organizing cues inform tissue function. Here we develop approaches for imaging myelopoiesis in mice, and generate atlases showing the differentiation of granulocytes, monocytes and dendritic cells. The generation of granulocytes and dendritic cells-monocytes localizes to different blood-vessel structures known as sinusoids, and displays lineage-specific spatial and clonal architectures. Acute systemic infection with Listeria monocytogenes induces lineage-specific progenitor clusters to undergo increased self-renewal of progenitors, but the different lineages remain spatially separated. Monocyte-dendritic cell progenitors (MDPs) map with nonclassical monocytes and conventional dendritic cells; these localize to a subset of blood vessels expressing a major regulator of myelopoiesis, colony-stimulating factor 1 (CSF1, also known as M-CSF)1. Specific deletion of Csf1 in endothelium disrupts the architecture around MDPs and their localization to sinusoids. Subsequently, there are fewer MDPs and their ability to differentiate is reduced, leading to a loss of nonclassical monocytes and dendritic cells during both homeostasis and infection. These data indicate that local cues produced by distinct blood vessels are responsible for the spatial organization of definitive blood cell differentiation.


Assuntos
Rastreamento de Células/métodos , Células Mieloides/citologia , Mielopoese , Coloração e Rotulagem/métodos , Animais , Atlas como Assunto , Vasos Sanguíneos/citologia , Vasos Sanguíneos/metabolismo , Linhagem da Célula , Autorrenovação Celular , Células Dendríticas/citologia , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Feminino , Granulócitos/citologia , Listeria monocytogenes/patogenicidade , Listeriose/microbiologia , Fator Estimulador de Colônias de Macrófagos/deficiência , Fator Estimulador de Colônias de Macrófagos/genética , Fator Estimulador de Colônias de Macrófagos/metabolismo , Masculino , Camundongos , Monócitos/citologia , Células Mieloides/metabolismo
6.
Mol Cell ; 73(1): 107-118.e4, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30503775

RESUMO

In addition to phosphodiester bond formation, RNA polymerase II has an RNA endonuclease activity, stimulated by TFIIS, which rescues complexes that have arrested and backtracked. How TFIIS affects transcription under normal conditions is poorly understood. We identified backtracking sites in human cells using a dominant-negative TFIIS (TFIISDN) that inhibits RNA cleavage and stabilizes backtracked complexes. Backtracking is most frequent within 2 kb of start sites, consistent with slow elongation early in transcription, and in 3' flanking regions where termination is enhanced by TFIISDN, suggesting that backtracked pol II is a favorable substrate for termination. Rescue from backtracking by RNA cleavage also promotes escape from 5' pause sites, prevents premature termination of long transcripts, and enhances activation of stress-inducible genes. TFIISDN slowed elongation rates genome-wide by half, suggesting that rescue of backtracked pol II by TFIIS is a major stimulus of elongation under normal conditions.


Assuntos
Clivagem do RNA , RNA Polimerase II/metabolismo , RNA/metabolismo , Elongação da Transcrição Genética , Terminação da Transcrição Genética , Ativação Transcricional , Região 3'-Flanqueadora , Animais , Regulação da Expressão Gênica , Células HEK293 , Humanos , Cinética , Camundongos , Mutação , RNA/genética , RNA Polimerase II/genética , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
7.
Proc Natl Acad Sci U S A ; 121(1): e2315930120, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38147558

RESUMO

Red blood cell (RBC) metabolic reprogramming upon exposure to high altitude contributes to physiological human adaptations to hypoxia, a multifaceted process critical to health and disease. To delve into the molecular underpinnings of this phenomenon, first, we performed a multi-omics analysis of RBCs from six lowlanders after exposure to high-altitude hypoxia, with longitudinal sampling at baseline, upon ascent to 5,100 m and descent to sea level. Results highlighted an association between erythrocyte levels of 2,3-bisphosphoglycerate (BPG), an allosteric regulator of hemoglobin that favors oxygen off-loading in the face of hypoxia, and expression levels of the Rhesus blood group RHCE protein. We then expanded on these findings by measuring BPG in RBCs from 13,091 blood donors from the Recipient Epidemiology and Donor Evaluation Study. These data informed a genome-wide association study using BPG levels as a quantitative trait, which identified genetic polymorphisms in the region coding for the Rhesus blood group RHCE as critical determinants of BPG levels in erythrocytes from healthy human volunteers. Mechanistically, we suggest that the Rh group complex, which participates in the exchange of ammonium with the extracellular compartment, may contribute to intracellular alkalinization, thus favoring BPG mutase activity.


Assuntos
Altitude , Antígenos de Grupos Sanguíneos , Hipóxia , Sistema do Grupo Sanguíneo Rh-Hr , Humanos , 2,3-Difosfoglicerato/metabolismo , Eritrócitos/metabolismo , Estudo de Associação Genômica Ampla , Hipóxia/genética , Hipóxia/metabolismo , Polimorfismo Genético , Sistema do Grupo Sanguíneo Rh-Hr/genética , Sistema do Grupo Sanguíneo Rh-Hr/metabolismo
8.
Blood ; 143(5): 456-472, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37976448

RESUMO

ABSTRACT: In the field of transfusion medicine, the clinical relevance of the metabolic markers of the red blood cell (RBC) storage lesion is incompletely understood. Here, we performed metabolomics of RBC units from 643 donors enrolled in the Recipient Epidemiology and Donor Evaluation Study, REDS RBC Omics. These units were tested on storage days 10, 23, and 42 for a total of 1929 samples and also characterized for end-of-storage hemolytic propensity after oxidative and osmotic insults. Our results indicate that the metabolic markers of the storage lesion poorly correlated with hemolytic propensity. In contrast, kynurenine was not affected by storage duration and was identified as the top predictor of osmotic fragility. RBC kynurenine levels were affected by donor age and body mass index and were reproducible within the same donor across multiple donations from 2 to 12 months apart. To delve into the genetic underpinnings of kynurenine levels in stored RBCs, we thus tested kynurenine levels in stored RBCs on day 42 from 13 091 donors from the REDS RBC Omics study, a population that was also genotyped for 879 000 single nucleotide polymorphisms. Through a metabolite quantitative trait loci analysis, we identified polymorphisms in SLC7A5, ATXN2, and a series of rate-limiting enzymes (eg, kynurenine monooxygenase, indoleamine 2,3-dioxygenase, and tryptophan dioxygenase) in the kynurenine pathway as critical factors affecting RBC kynurenine levels. By interrogating a donor-recipient linkage vein-to-vein database, we then report that SLC7A5 polymorphisms are also associated with changes in hemoglobin and bilirubin levels, suggestive of in vivo hemolysis in 4470 individuals who were critically ill and receiving single-unit transfusions.


Assuntos
Doadores de Sangue , Hemólise , Humanos , Cinurenina/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Eritrócitos/metabolismo , Metabolômica , Preservação de Sangue/métodos
9.
Blood ; 143(24): 2517-2533, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38513237

RESUMO

ABSTRACT: Recent large-scale multiomics studies suggest that genetic factors influence the chemical individuality of donated blood. To examine this concept, we performed metabolomics analyses of 643 blood units from volunteers who donated units of packed red blood cells (RBCs) on 2 separate occasions. These analyses identified carnitine metabolism as the most reproducible pathway across multiple donations from the same donor. We also measured l-carnitine and acyl-carnitines in 13 091 packed RBC units from donors in the Recipient Epidemiology and Donor Evaluation study. Genome-wide association studies against 879 000 polymorphisms identified critical genetic factors contributing to interdonor heterogeneity in end-of-storage carnitine levels, including common nonsynonymous polymorphisms in genes encoding carnitine transporters (SLC22A16, SLC22A5, and SLC16A9); carnitine synthesis (FLVCR1 and MTDH) and metabolism (CPT1A, CPT2, CRAT, and ACSS2), and carnitine-dependent repair of lipids oxidized by ALOX5. Significant associations between genetic polymorphisms on SLC22 transporters and carnitine pools in stored RBCs were validated in 525 Diversity Outbred mice. Donors carrying 2 alleles of the rs12210538 SLC22A16 single-nucleotide polymorphism exhibited the lowest l-carnitine levels, significant elevations of in vitro hemolysis, and the highest degree of vesiculation, accompanied by increases in lipid peroxidation markers. Separation of RBCs by age, via in vivo biotinylation in mice, and Percoll density gradients of human RBCs, showed age-dependent depletions of l-carnitine and acyl-carnitine pools, accompanied by progressive failure of the reacylation process after chemically induced membrane lipid damage. Supplementation of stored murine RBCs with l-carnitine boosted posttransfusion recovery, suggesting this could represent a viable strategy to improve RBC storage quality.


Assuntos
Carnitina , Eritrócitos , Hemólise , Carnitina/metabolismo , Humanos , Animais , Camundongos , Eritrócitos/metabolismo , Polimorfismo de Nucleotídeo Único , Envelhecimento Eritrocítico , Estudo de Associação Genômica Ampla , Masculino , Feminino , Membro 5 da Família 22 de Carreadores de Soluto/genética , Membro 5 da Família 22 de Carreadores de Soluto/metabolismo , Preservação de Sangue/métodos
10.
Proc Natl Acad Sci U S A ; 120(32): e2115616120, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37494421

RESUMO

Transfusion of red blood cells (RBCs) is one of the most valuable and widespread treatments in modern medicine. Lifesaving RBC transfusions are facilitated by the cold storage of RBC units in blood banks worldwide. Currently, RBC storage and subsequent transfusion practices are performed using simplistic workflows. More specifically, most blood banks follow the "first-in-first-out" principle to avoid wastage, whereas most healthcare providers prefer the "last-in-first-out" approach simply favoring chronologically younger RBCs. Neither approach addresses recent advances through -omics showing that stored RBC quality is highly variable depending on donor-, time-, and processing-specific factors. Thus, it is time to rethink our workflows in transfusion medicine taking advantage of novel technologies to perform RBC quality assessment. We imagine a future where lab-on-a-chip technologies utilize novel predictive markers of RBC quality identified by -omics and machine learning to usher in a new era of safer and precise transfusion medicine.


Assuntos
Preservação de Sangue , Procedimentos Analíticos em Microchip , Transfusão de Sangue/instrumentação , Transfusão de Sangue/métodos , Humanos , Preservação de Sangue/métodos , Dispositivos Lab-On-A-Chip , Eritrócitos , Aprendizado de Máquina
11.
RNA ; 29(10): 1458-1470, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37369529

RESUMO

RNA-binding proteins (RBPs) are key regulators of gene expression. Small molecules targeting these RBP-RNA interactions are a rapidly emerging class of therapeutics for treating a variety of diseases. Ro-08-2750 (Ro) is a small molecule identified as a competitive inhibitor of Musashi (MSI)-RNA interactions. Here, we show that multiple Ro-dependent cellular phenotypes, specifically adrenocortical steroid production and cell viability, are Musashi-2 (MSI2)-independent. Using an unbiased proteome-wide approach, we discovered Ro broadly interacts with RBPs, many containing RRM domains. To confirm this finding, we leveraged the large-scale ENCODE data to identify a subset of RBPs whose depletion phenocopies Ro inhibition, indicating Ro is a promiscuous inhibitor of multiple RBPs. Consistent with broad disruption of ribonucleoprotein complexes, Ro treatment leads to stress granule formation. This strategy represents a generalizable framework for validating the specificity and identifying targets of RBP inhibitors in a cellular context.


Assuntos
Proteínas de Ligação a RNA , RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Proteoma/genética , Fenótipo
12.
Immunity ; 44(6): 1299-311, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27234056

RESUMO

Mitochondrial respiration is regulated in CD8(+) T cells during the transition from naive to effector and memory cells, but mechanisms controlling this process have not been defined. Here we show that MCJ (methylation-controlled J protein) acted as an endogenous break for mitochondrial respiration in CD8(+) T cells by interfering with the formation of electron transport chain respiratory supercomplexes. Metabolic profiling revealed enhanced mitochondrial metabolism in MCJ-deficient CD8(+) T cells. Increased oxidative phosphorylation and subcellular ATP accumulation caused by MCJ deficiency selectively increased the secretion, but not expression, of interferon-γ. MCJ also adapted effector CD8(+) T cell metabolism during the contraction phase. Consequently, memory CD8(+) T cells lacking MCJ provided superior protection against influenza virus infection. Thus, MCJ offers a mechanism for fine-tuning CD8(+) T cell mitochondrial metabolism as an alternative to modulating mitochondrial mass, an energetically expensive process. MCJ could be a therapeutic target to enhance CD8(+) T cell responses.


Assuntos
Linfócitos T CD8-Positivos/fisiologia , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/metabolismo , Infecções por Orthomyxoviridae/imunologia , Orthomyxoviridae/imunologia , Trifosfato de Adenosina/metabolismo , Animais , Respiração Celular , Células Cultivadas , Memória Imunológica , Interferon gama/metabolismo , Ativação Linfocitária , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Mitocondriais/genética , Chaperonas Moleculares/genética , Fosforilação Oxidativa
13.
EMBO Rep ; 24(5): e55373, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36943011

RESUMO

Upon ex vivo culture, hematopoietic stem cells (HSCs) quickly lose potential and differentiate into progenitors. The identification of culture conditions that maintain the potential of HSCs ex vivo is therefore of high clinical interest. Here, we demonstrate that the potential of murine and human HSCs is maintained when cultivated for 2 days ex vivo at a pH of 6.9, in contrast to cultivation at the commonly used pH of 7.4. When cultivated at a pH of 6.9, HSCs remain smaller, less metabolically active, less proliferative and show enhanced reconstitution ability upon transplantation compared to HSC cultivated at pH 7.4. HSCs kept at pH 6.9 show an attenuated polyamine pathway. Pharmacological inhibition of the polyamine pathway in HSCs cultivated at pH 7.4 with DFMO mimics phenotypes and potential of HSCs cultivated at pH 6.9. Ex vivo exposure to a pH of 6.9 is therefore a positive regulator of HSC function by reducing polyamines. These findings might improve HSC short-term cultivation protocols for transplantation and gene therapy interventions.


Assuntos
Células-Tronco Hematopoéticas , Humanos , Camundongos , Animais , Células-Tronco Hematopoéticas/metabolismo , Concentração de Íons de Hidrogênio
14.
Proc Natl Acad Sci U S A ; 119(11)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35217532

RESUMO

The impacts of interferon (IFN) signaling on COVID-19 pathology are multiple, with both protective and harmful effects being documented. We report here a multiomics investigation of systemic IFN signaling in hospitalized COVID-19 patients, defining the multiomics biosignatures associated with varying levels of 12 different type I, II, and III IFNs. The antiviral transcriptional response in circulating immune cells is strongly associated with a specific subset of IFNs, most prominently IFNA2 and IFNG. In contrast, proteomics signatures indicative of endothelial damage and platelet activation associate with high levels of IFNB1 and IFNA6. Seroconversion and time since hospitalization associate with a significant decrease in a specific subset of IFNs. Additionally, differential IFN subtype production is linked to distinct constellations of circulating myeloid and lymphoid immune cell types. Each IFN has a unique metabolic signature, with IFNG being the most associated with activation of the kynurenine pathway. IFNs also show differential relationships with clinical markers of poor prognosis and disease severity. For example, whereas IFNG has the strongest association with C-reactive protein and other immune markers of poor prognosis, IFNB1 associates with increased neutrophil to lymphocyte ratio, a marker of late severe disease. Altogether, these results reveal specialized IFN action in COVID-19, with potential diagnostic and therapeutic implications.


Assuntos
Sangue/metabolismo , COVID-19/imunologia , Interferons/sangue , Proteoma , Transcriptoma , COVID-19/sangue , Estudos de Casos e Controles , Conjuntos de Dados como Assunto , Humanos , Pacientes Internados
15.
J Proteome Res ; 23(4): 1163-1173, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38386921

RESUMO

Trauma-induced coagulopathy (TIC) is a leading contributor to preventable mortality in severely injured patients. Understanding the molecular drivers of TIC is an essential step in identifying novel therapeutics to reduce morbidity and mortality. This study investigated multiomics and viscoelastic responses to polytrauma using our novel swine model and compared these findings with severely injured patients. Molecular signatures of TIC were significantly associated with perturbed coagulation and inflammation systems as well as extensive hemolysis. These results were consistent with patterns observed in trauma patients who had multisystem injuries. Here, intervention using resuscitative endovascular balloon occlusion of the aorta following polytrauma in our swine model revealed distinct multiomics alterations as a function of placement location. Aortic balloon placement in zone-1 worsened ischemic damage and mitochondrial dysfunction, patterns that continued throughout the monitored time course. While placement in zone-III showed a beneficial effect on TIC, it showed an improvement in effective coagulation. Taken together, this study highlights the translational relevance of our polytrauma swine model for investigating therapeutic interventions to correct TIC in patients.


Assuntos
Oclusão com Balão , Traumatismo Múltiplo , Humanos , Animais , Suínos , Multiômica , Traumatismo Múltiplo/complicações , Traumatismo Múltiplo/terapia , Aorta , Coagulação Sanguínea , Oclusão com Balão/métodos
16.
Dev Biol ; 501: 28-38, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37301463

RESUMO

Recent studies illustrate the importance of regulation of cellular metabolism, especially glycolysis and pathways branching from glycolysis, during vertebrate embryo development. For example, glycolysis generates cellular energy ATP. Glucose carbons are also directed to the pentose phosphate pathway, which is needed to sustain anabolic processes in the rapidly growing embryos. However, our understanding of the exact status of glycolytic metabolism as well as genes that regulate glycolytic metabolism are still incomplete. Sall4 is a zinc finger transcription factor that is highly expressed in undifferentiated cells in developing mouse embryos, such as blastocysts and the post-implantation epiblast. TCre; Sall4 conditional knockout mouse embryos exhibit various defects in the posterior part of the body, including hindlimbs. Using transcriptomics approaches, we found that many genes encoding glycolytic enzymes are upregulated in the posterior trunk, including the hindlimb-forming region, of Sall4 conditional knockout mouse embryos. In situ hybridization and qRT-PCR also confirmed upregulation of expression of several glycolytic genes in hindlimb buds. A fraction of those genes are bound by SALL4 at the promoters, gene bodies or distantly-located regions, suggesting that Sall4 directly regulates expression of several glycolytic enzyme genes in hindlimb buds. To further gain insight into the metabolic status associated with the observed changes at the transcriptional level, we performed a comprehensive analysis of metabolite levels in limb buds in wild type and Sall4 conditional knockout embryos by high-resolution mass spectrometry. We found that the levels of metabolic intermediates of glycolysis are lower, but glycolytic end-products pyruvate and lactate did not exhibit differences in Sall4 conditional knockout hindlimb buds. The increased expression of glycolytic genes would have caused accelerated glycolytic flow, resulting in low levels of intermediates. This condition may have prevented intermediates from being re-directed to other pathways, such as the pentose phosphate pathway. Indeed, the change in glycolytic metabolite levels is associated with reduced levels of ATP and metabolites of the pentose phosphate pathway. To further test whether glycolysis regulates limb patterning downstream of Sall4, we conditionally inactivated Hk2, which encodes a rate-limiting enzyme gene in glycolysis and is regulated by Sall4. The TCre; Hk2 conditional knockout hindlimb exhibited a short femur, and a lack of tibia and anterior digits in hindlimbs, which are defects similarly found in the TCre; Sall4 conditional knockout. The similarity of skeletal defects in Sall4 mutants and Hk2 mutants suggests that regulation of glycolysis plays a role in hindlimb patterning. These data suggest that Sall4 restricts glycolysis in limb buds and contributes to patterning and regulation of glucose carbon flow during development of limb buds.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Botões de Extremidades , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Glucose/metabolismo , Glicólise/genética , Botões de Extremidades/metabolismo , Camundongos Knockout
17.
J Biol Chem ; 299(10): 105186, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37611829

RESUMO

Loss of protein kinase Cδ (PKCδ) activity renders cells resistant to DNA damaging agents, including irradiation; however, the mechanism(s) underlying resistance is poorly understood. Here, we have asked if metabolic reprogramming by PKCδ contributes to radioprotection. Analysis of global metabolomics showed that depletion of PKCδ affects metabolic pathways that control energy production and antioxidant, nucleotide, and amino acid biosynthesis. Increased NADPH and nucleotide production in PKCδ-depleted cells is associated with upregulation of the pentose phosphate pathway (PPP) as evidenced by increased activation of G6PD and an increase in the nucleotide precursor, 5-phosphoribosyl-1-pyrophosphate. Stable isotope tracing with U-[13C6] glucose showed reduced utilization of glucose for glycolysis in PKCδ-depleted cells and no increase in U-[13C6] glucose incorporation into purines or pyrimidines. In contrast, isotope tracing with [13C5, 15N2] glutamine showed increased utilization of glutamine for synthesis of nucleotides, glutathione, and tricarboxylic acid intermediates and increased incorporation of labeled glutamine into pyruvate and lactate. Using a glycolytic rate assay, we confirmed that anaerobic glycolysis is increased in PKCδ-depleted cells; this was accompanied by a reduction in oxidative phosphorylation, as assayed using a mitochondrial stress assay. Importantly, pretreatment of cells with specific inhibitors of the PPP or glutaminase prior to irradiation reversed radioprotection in PKCδ-depleted cells, indicating that these cells have acquired codependency on the PPP and glutamine for survival. Our studies demonstrate that metabolic reprogramming to increase utilization of glutamine and nucleotide synthesis contributes to radioprotection in the context of PKCδ inhibition.

18.
Cancer Immunol Immunother ; 73(5): 90, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554147

RESUMO

Clinically approved head and neck squamous cell carcinoma (HNSCC) immunotherapies manipulate the immune checkpoint blockade (ICB) axis but have had limited success outside of recurrent/metastatic disease. Interleukin-7 (IL7) has been shown to be essential for effector T-cell survival, activation, and proliferation. Here, we show that IL7 in combination with radiotherapy (RT) is effective in activating CD8 + T-cells for reducing tumor growth. Our studies were conducted using both human papillomavirus related and unrelated orthotopic HNSCC murine models. Immune populations from the tumor, draining lymph nodes, and blood were compared between treatment groups and controls using flow cytometry, proteomics, immunofluorescence staining, and RNA sequencing. Treatment with RT and IL7 (RT + IL7) resulted in significant tumor growth reduction, high CD8 T-cell tumor infiltration, and increased proliferation of T-cell progenitors in the bone marrow. IL7 also expanded a memory-like subpopulation of CD8 T-cells. These results indicate that IL7 in combination with RT can serve as an effective immunotherapy strategy outside of the conventional ICB axis to drive the antitumor activity of CD8 T-cells.


Assuntos
Neoplasias de Cabeça e Pescoço , Interleucina-7 , Humanos , Camundongos , Animais , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Células T de Memória , Linfócitos T CD8-Positivos , Neoplasias de Cabeça e Pescoço/radioterapia , Microambiente Tumoral
19.
Chembiochem ; 25(2): e202300572, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-37861981

RESUMO

Biomanufacturing via microorganisms relies on carbon substrates for molecular feedstocks and a source of energy to carry out enzymatic reactions. This creates metabolic bottlenecks and lowers the efficiency for substrate conversion. Nanoparticle biohybridization with proteins and whole cell surfaces can bypass the need for redox cofactor regeneration for improved secondary metabolite production in a non-specific manner. Here we propose using nanobiohybrid organisms (Nanorgs), intracellular protein-nanoparticle hybrids formed through the spontaneous coupling of core-shell quantum dots (QDs) with histidine-tagged enzymes in non-photosynthetic bacteria, for light-mediated control of bacterial metabolism. This proved to eliminate metabolic constrictions and replace glucose with light as the source of energy in Escherichia coli, with an increase in growth by 1.7-fold in 75 % reduced nutrient media. Metabolomic tracking through carbon isotope labeling confirmed flux shunting through targeted pathways, with accumulation of metabolites downstream of respective targets. Finally, application of Nanorgs with the Ehrlich pathway improved isobutanol titers/yield by 3.9-fold in 75 % less sugar from E. coli strains with no genetic alterations. These results demonstrate the promise of Nanorgs for metabolic engineering and low-cost biomanufacturing.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Redes e Vias Metabólicas , Proteínas de Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Carbono/metabolismo
20.
J Transl Med ; 22(1): 301, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521955

RESUMO

BACKGROUND: Due to their complexity and to the presence of common clinical features, differentiation between asthma and chronic obstructive pulmonary disease (COPD) can be a challenging task, complicated in such cases also by asthma-COPD overlap syndrome. The distinct immune/inflammatory and structural substrates of COPD and asthma are responsible for significant differences in the responses to standard pharmacologic treatments. Therefore, an accurate diagnosis is of central relevance to assure the appropriate therapeutic intervention in order to achieve safe and effective patient care. Induced sputum (IS) accurately mirrors inflammation in the airways, providing a more direct picture of lung cell metabolism in comparison to those specimen that reflect analytes in the systemic circulation. METHODS: An integrated untargeted metabolomics and lipidomics analysis was performed in IS of asthmatic (n = 15) and COPD (n = 22) patients based on Ultra-High-Pressure Liquid Chromatography-Mass Spectrometry (UHPLC-MS) and UHPLC-tandem MS (UHPLC-MS/MS). Partial Least Squares-Discriminant Analysis (PLS-DA) was applied to resulting dataset. The analysis of main enriched metabolic pathways and the association of the preliminary metabolites/lipids pattern identified to clinical parameters of asthma/COPD differentiation were explored. Multivariate ROC analysis was performed in order to determine the discriminatory power and the reliability of the putative biomarkers for diagnosis between COPD and asthma. RESULTS: PLS-DA indicated a clear separation between COPD and asthmatic patients. Among the 15 selected candidate biomarkers based on Variable Importance in Projection scores, putrescine showed the highest score. A differential IS bio-signature of 22 metabolites and lipids was found, which showed statistically significant variations between asthma and COPD. Of these 22 compounds, 18 were decreased and 4 increased in COPD compared to asthmatic patients. The IS levels of Phosphatidylethanolamine (PE) (34:1), Phosphatidylglycerol (PG) (18:1;18:2) and spermine were significantly higher in asthmatic subjects compared to COPD. CONCLUSIONS: This is the first pilot study to analyse the IS metabolomics/lipidomics signatures relevant in discriminating asthma vs COPD. The role of polyamines, of 6-Hydroxykynurenic acid and of D-rhamnose as well as of other important players related to the alteration of glycerophospholipid, aminoacid/biotin and energy metabolism provided the construction of a diagnostic model that, if validated on a larger prospective cohort, might be used to rapidly and accurately discriminate asthma from COPD.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Humanos , Lipidômica , Espectrometria de Massas em Tandem/métodos , Escarro/metabolismo , Diagnóstico Diferencial , Reprodutibilidade dos Testes , Projetos Piloto , Estudos Prospectivos , Asma/diagnóstico , Asma/metabolismo , Biomarcadores , Metabolômica/métodos , Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA