Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Sensors (Basel) ; 24(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38794058

RESUMO

Cyanobacteria bloom is the term used to describe an abnormal and rapid growth of cyanobacteria in aquatic ecosystems such as lakes, rivers, and oceans as a consequence of anthropic factors, ecosystem degradation, or climate change. Cyanobacteria belonging to the genera Microcystis, Anabaena, Planktothrix, and Nostoc produce and release toxins called microcystins (MCs) into the water. MCs can have severe effects on human and animal health following their ingestion and inhalation. The MC structure is composed of a constant region (composed of five amino acid residues) and a variable region (composed of two amino acid residues). When the MC variable region is composed of arginine and leucine, it is named MC-LR. The most-common methods used to detect the presence of MC-LR in water are chromatographic-based methods (HPLC, LC/MS, GC/MS) and immunological-based methods (ELISA). In this work, we developed a new competitive Förster resonance energy transfer (FRET) assay to detect the presence of traces of MC-LR in water. Monoclonal antibody anti-MC-LR and MC-LR conjugated with bovine serum albumin (BSA) were labeled with the near-infrared fluorophores CF568 and CF647, respectively. Steady-state fluorescence measurements were performed to investigate the energy transfer process between anti-MC-LR 568 and MC-LR BSA 647 upon their interaction. Since the presence of unlabeled MC-LR competes with the labeled one, a lower efficiency of FRET process can be observed in the presence of an increasing amount of unlabeled MC-LR. The limit of detection (LoD) of the FRET assay is found to be 0.245 nM (0.245 µg/L). This value is lower than the provisional limit established by the World Health Organization (WHO) for quantifying the presence of MC-LR in drinking water.


Assuntos
Água Potável , Transferência Ressonante de Energia de Fluorescência , Toxinas Marinhas , Microcistinas , Microcistinas/análise , Microcistinas/imunologia , Transferência Ressonante de Energia de Fluorescência/métodos , Água Potável/análise , Água Potável/química , Toxinas Marinhas/análise , Cianobactérias/química , Humanos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/química
2.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37569474

RESUMO

The development of sensitive methods for the detection of endotoxin molecules, such as lipopolysaccharides (LPS), is essential for food safety and health control. Conventional analytical methods used for LPS detection are based on the pyrogen test, plating and culture-based methods, and the limulus amoebocyte lysate method (LAL). Alternatively, the development of reliable biosensors for LPS detection would be highly desirable to solve some critical issues, such as high cost and a long turnaround time. In this work, we present a label-free Surface-Enhanced Raman Spectroscopy (SERS)-based method for LPS detection in its free form. The proposed method combines the benefits of plasmonic enhancement with the selectivity provided by a specific anti-lipid A antibody (Ab). A high-enhancing nanostructured silver substrate was coated with Ab. The presence of LPS was quantitatively monitored by analyzing the changes in the Ab spectra obtained in the absence and presence of LPS. A limit of detection (LOD) and quantification (LOQ) of 12 ng/mL and 41 ng/mL were estimated, respectively. Importantly, the proposed technology could be easily expanded for the determination of other biological macromolecules.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Animais , Endotoxinas , Lipopolissacarídeos , Análise Espectral Raman , Caranguejos Ferradura , Nanopartículas Metálicas/química
3.
Sensors (Basel) ; 22(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35161454

RESUMO

In this paper we present the development of photonic integrated circuit (PIC) biosensors for the label-free detection of six emerging and endemic swine viruses, namely: African Swine Fever Virus (ASFV), Classical Swine Fever Virus (CSFV), Porcine Reproductive and Respiratory Syndrome Virus (PPRSV), Porcine Parvovirus (PPV), Porcine Circovirus 2 (PCV2), and Swine Influenza Virus A (SIV). The optical biosensors are based on evanescent wave technology and, in particular, on Resonant Rings (RRs) fabricated in silicon nitride. The novel biosensors were packaged in an integrated sensing cartridge that included a microfluidic channel for buffer/sample delivery and an optical fiber array for the optical operation of the PICs. Antibodies were used as molecular recognition elements (MREs) and were selected based on western blotting and ELISA experiments to ensure the high sensitivity and specificity of the novel sensors. MREs were immobilized on RR surfaces to capture viral antigens. Antibody-antigen interactions were transduced via the RRs to a measurable resonant shift. Cell culture supernatants for all of the targeted viruses were used to validate the biosensors. Resonant shift responses were dose-dependent. The results were obtained within the framework of the SWINOSTICS project, contributing to cover the need of the novel diagnostic tools to tackle swine viral diseases.


Assuntos
Vírus da Febre Suína Africana , Técnicas Biossensoriais , Circovirus , Doenças dos Suínos , Viroses , Animais , Suínos
4.
Int J Mol Sci ; 23(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35806467

RESUMO

African swine fever (ASF) is one of the most dangerous hemorrhagic infectious diseases that affect domestic and wild pigs. Currently, neither a vaccine nor effective treatments are available for this disease. As regards the degree of virulence, ASFV strains can be divided into high, moderate, or low virulence. The main detection methods are based on the use of the polymerase chain reaction (PCR). In order to prevent an uncontrolled spread of ASF, new on-site techniques that can enable the identification of an early-stage disease are needed. We have developed a specific immunological SPR-based assay for ASFV antigen detection directly in liquid samples. The developed assay allows us to detect the presence of ASFV at the dose of 103 HAD50/mL.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Febre Suína Africana/diagnóstico , Animais , Ressonância de Plasmônio de Superfície , Sus scrofa , Suínos , Virulência
5.
Int J Mol Sci ; 23(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35409403

RESUMO

Odorant-binding proteins (OBPs) are a group of small and soluble proteins present in both vertebrates and insects. They have a high level of structural stability and bind to a large spectrum of odorant molecules. In the environmental field, benzene is the most dangerous compound among the class of pollutants named BTEX (benzene, toluene, ethylbenzene, and xylene). It has several effects on human health and, consequently, it appears to be important to monitor its presence in the environment. Commonly, its detection requires the use of very sophisticated and time-consuming analytical techniques (GC-MS, etc.) as well as the presence of specialized personnel. Here, we present the application of an odorant-binding protein (pOBP) isolated from pigs as a molecular recognition element (MRE) for a low-energy impedenziometric biosensor for outdoor and real-time benzene detection. The obtained results show that the biosensor can detect the presence of 64 pM (5 µg/m3) benzene, the limit value of exposure for human health set by the European Directive 2008/50/EC.


Assuntos
Benzeno , Receptores Odorantes , Animais , Derivados de Benzeno , Suínos , Tolueno , Xilenos
6.
Sensors (Basel) ; 21(3)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572812

RESUMO

The purpose of this work is to provide an exhaustive overview of the emerging biosensor technologies for the detection of analytes of interest for food, environment, security, and health. Over the years, biosensors have acquired increasing importance in a wide range of applications due to synergistic studies of various scientific disciplines, determining their great commercial potential and revealing how nanotechnology and biotechnology can be strictly connected. In the present scenario, biosensors have increased their detection limit and sensitivity unthinkable until a few years ago. The most widely used biosensors are optical-based devices such as surface plasmon resonance (SPR)-based biosensors and fluorescence-based biosensors. Here, we will review them by highlighting how the progress in their design and development could impact our daily life.


Assuntos
Técnicas Biossensoriais , Ressonância de Plasmônio de Superfície , Alérgenos , Espectrometria de Fluorescência
7.
Int J Mol Sci ; 22(12)2021 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-34199271

RESUMO

Nicotinamide mononucleotide (NMN) is a key intermediate in the nicotinamide adenine dinucleotide (NAD+) biosynthesis. Its supplementation has demonstrated beneficial effects on several diseases. The aim of this study was to characterize NMN deamidase (PncC) inactive mutants to use as possible molecular recognition elements (MREs) for an NMN-specific biosensor. Thermal stability assays and steady-state fluorescence spectroscopy measurements were used to study the binding of NMN and related metabolites (NaMN, Na, Nam, NR, NAD, NADP, and NaAD) to the PncC mutated variants. In particular, the S29A PncC and K61Q PncC variant forms were selected since they still preserve the ability to bind NMN in the micromolar range, but they are not able to catalyze the enzymatic reaction. While S29A PncC shows a similar affinity also for NaMN (the product of the PncC catalyzed reaction), K61Q PncC does not interact significantly with it. Thus, PncC K61Q mutant seems to be a promising candidate to use as specific probe for an NMN biosensor.


Assuntos
Amidoidrolases/genética , Técnicas Biossensoriais , Mutação/genética , Mononucleotídeo de Nicotinamida/metabolismo , Estabilidade Enzimática , Cinética , Mononucleotídeo de Nicotinamida/química , Multimerização Proteica , Espectrometria de Fluorescência , Temperatura , Triptofano/metabolismo
8.
Int J Mol Sci ; 21(19)2020 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-32993097

RESUMO

The synthesis of two 5'-end (4-dimethylamino)azobenzene conjugated G-quadruplex forming aptamers, the thrombin binding aptamer (TBA) and the HIV-1 integrase aptamer (T30695), was performed. Their structural behavior was investigated by means of UV, CD, fluorescence spectroscopy, and gel electrophoresis techniques in K+-containing buffers and water-ethanol blends. Particularly, we observed that the presence of the 5'-(4-dimethylamino)azobenzene moiety leads TBA to form multimers instead of the typical monomolecular chair-like G-quadruplex and almost hampers T30695 G-quadruplex monomers to dimerize. Fluorescence studies evidenced that both the conjugated G-quadruplexes possess unique fluorescence features when excited at wavelengths corresponding to the UV absorption of the conjugated moiety. Furthermore, a preliminary investigation of the trans-cis conversion of the dye incorporated at the 5'-end of TBA and T30695 showed that, unlike the free dye, in K+-containing water-ethanol-triethylamine blend the trans-to-cis conversion was almost undetectable by means of a standard UV spectrophotometer.


Assuntos
Aptâmeros de Nucleotídeos/química , Compostos Azo/química , Quadruplex G , Oligonucleotídeos/química , Análise Espectral
9.
Cell Commun Signal ; 17(1): 20, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30823936

RESUMO

BACKGROUND: Shp1, a tyrosine-phosphatase-1 containing the Src-homology 2 (SH2) domain, is involved in inflammatory and immune reactions, where it regulates diverse signalling pathways, usually by limiting cell responses through dephosphorylation of target molecules. Moreover, Shp1 regulates actin dynamics. One Shp1 target is Src, which controls many cellular functions including actin dynamics. Src has been previously shown to be activated by a signalling cascade initiated by the cytosolic-phospholipase A2 (cPLA2) metabolite glycerophosphoinositol 4-phosphate (GroPIns4P), which enhances actin polymerisation and motility. While the signalling cascade downstream Src has been fully defined, the mechanism by which GroPIns4P activates Src remains unknown. METHODS: Affinity chromatography, mass spectrometry and co-immunoprecipitation studies were employed to identify the GroPIns4P-interactors; among these Shp1 was selected for further analysis. The specific Shp1 residues interacting with GroPIns4P were revealed by NMR and validated by site-directed mutagenesis and biophysical methods such as circular dichroism, isothermal calorimetry, fluorescence spectroscopy, surface plasmon resonance and computational modelling. Morphological and motility assays were performed in NIH3T3 fibroblasts. RESULTS: We find that Shp1 is the direct cellular target of GroPIns4P. GroPIns4P directly binds to the Shp1-SH2 domain region (with the crucial residues being Ser 118, Arg 138 and Ser 140) and thereby promotes the association between Shp1 and Src, and the dephosphorylation of the Src-inhibitory phosphotyrosine in position 530, resulting in Src activation. As a consequence, fibroblast cells exposed to GroPIns4P show significantly enhanced wound healing capability, indicating that GroPIns4P has a stimulatory role to activate fibroblast migration. GroPIns4P is produced by cPLA2 upon stimulation by diverse receptors, including the EGF receptor. Indeed, endogenously-produced GroPIns4P was shown to mediate the EGF-induced cell motility. CONCLUSIONS: This study identifies a so-far undescribed mechanism of Shp1/Src modulation that promotes cell motility and that is dependent on the cPLA2 metabolite GroPIns4P. We show that GroPIns4P is required for EGF-induced fibroblast migration and that it is part of a cPLA2/GroPIns4P/Shp1/Src cascade that might have broad implications for studies of immune-inflammatory response and cancer.


Assuntos
Movimento Celular , Receptores ErbB/metabolismo , Fosfatos de Inositol/metabolismo , Fosfolipases A2/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Transdução de Sinais , Quinases da Família src/metabolismo , Animais , Sítios de Ligação , Fator de Crescimento Epidérmico/farmacologia , Camundongos , Células NIH 3T3 , Fosforilação , Ligação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 6/química , Células RAW 264.7 , Cicatrização , Domínios de Homologia de src
10.
Nature ; 501(7465): 116-20, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-23913272

RESUMO

Newly synthesized proteins and lipids are transported across the Golgi complex via different mechanisms whose respective roles are not completely clear. We previously identified a non-vesicular intra-Golgi transport pathway for glucosylceramide (GlcCer)--the common precursor of the different series of glycosphingolipids-that is operated by the cytosolic GlcCer-transfer protein FAPP2 (also known as PLEKHA8) (ref. 1). However, the molecular determinants of the FAPP2-mediated transfer of GlcCer from the cis-Golgi to the trans-Golgi network, as well as the physiological relevance of maintaining two parallel transport pathways of GlcCer--vesicular and non-vesicular--through the Golgi, remain poorly defined. Here, using mouse and cell models, we clarify the molecular mechanisms underlying the intra-Golgi vectorial transfer of GlcCer by FAPP2 and show that GlcCer is channelled by vesicular and non-vesicular transport to two topologically distinct glycosylation tracks in the Golgi cisternae and the trans-Golgi network, respectively. Our results indicate that the transport modality across the Golgi complex is a key determinant for the glycosylation pattern of a cargo and establish a new paradigm for the branching of the glycosphingolipid synthetic pathway.


Assuntos
Glucosilceramidas/metabolismo , Glicosilação , Complexo de Golgi/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Transporte Biológico , Linhagem Celular , Globosídeos/biossíntese , Globosídeos/química , Globosídeos/metabolismo , Glucosilceramidas/química , Glicoesfingolipídeos/biossíntese , Glicoesfingolipídeos/química , Glicoesfingolipídeos/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fosfatos de Fosfatidilinositol/metabolismo , Rede trans-Golgi/metabolismo
11.
Nanomedicine ; 15(1): 231-242, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30308301

RESUMO

Even if cancer specific biomarkers are present in peripheral blood of cancer patients, it is very difficult to detect them with conventional technology because of their low concentration. A potential cancer biomarker is the HMGA1b protein, whose overexpression is a feature of several human malignant neoplasias. By taking advantage of the surface plasmon resonance (SPR) phenomenon, we realized a specific nano/technology-based assay for cancer detection. More in details, anti-HMGA1b monoclonal antibodies, whose affinity was previously defined by ELISA, were immobilized onto metallic surfaces to develop a direct SPR-based assay. After having analyzed blood samples from colorectal cancer patients and healthy people for the presence of HMGA1b, we observed a 2-fold increase of the HMGA1b levels in the blood of cancer patients with respect to the healthy control people. We conclude that the set-up technology might allow to detect a tumoral mass through the evaluation of HMGA1b protein blood levels.


Assuntos
Biomarcadores Tumorais/sangue , Técnicas Biossensoriais/métodos , Neoplasias Colorretais/sangue , Proteína HMGA1b/sangue , Nanotecnologia/métodos , Proteínas Recombinantes/imunologia , Biomarcadores Tumorais/imunologia , Estudos de Casos e Controles , Neoplasias Colorretais/imunologia , Ensaio de Imunoadsorção Enzimática , Proteína HMGA1b/imunologia , Humanos , Ressonância de Plasmônio de Superfície
12.
Sensors (Basel) ; 19(18)2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31540156

RESUMO

In this paper we introduce a field diagnostic device based on the combination of advanced bio-sensing and photonics technologies, to tackle emerging and endemic viruses causing swine epidemics, and consequently significant economic damage in farms. The device is based on the use of microring resonators fabricated in silicon nitride with CMOS compatible techniques. In the paper, the designed and fabricated photonic integrated circuit (PIC) sensors are presented and characterized, showing an optimized performance in terms of optical losses (30 dB per ring) and extinction ration for ring resonances (15 dB). Furthermore, the results of an experiment for porcine circovirus 2 (PCV2) detection by using the developed biosensors are presented. Positive detection for different virus concentrations has been obtained. The device is currently under development in the framework of the EU Commission co-funded project SWINOSTICS.


Assuntos
Técnicas Biossensoriais/métodos , Óptica e Fotônica , Doenças dos Suínos/diagnóstico , Doenças dos Suínos/virologia , Viroses/diagnóstico , Animais , Circovirus/isolamento & purificação , Suínos
13.
Sensors (Basel) ; 19(2)2019 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-30669504

RESUMO

In this paper, we present the concept of a novel diagnostic device for on-site analyses, based on the use of advanced bio-sensing and photonics technologies to tackle emerging and endemic viruses causing swine epidemics and significant economic damage in farms. The device is currently under development in the framework of the EU Commission co-funded project. The overall concept behind the project is to develop a method for an early and fast on field detection of selected swine viruses by non-specialized personnel. The technology is able to detect pathogens in different types of biological samples, such as oral fluids, faeces, blood or nasal swabs. The device will allow for an immediate on-site threat assessment. In this work, we present the overall concept of the device, its architecture with the technical requirements, and all the used innovative technologies that contribute to the advancements of the current state of the art.


Assuntos
Equipamentos para Diagnóstico , Doenças dos Suínos/diagnóstico , Suínos/virologia , Viroses/diagnóstico , Animais , Técnicas Biossensoriais , Reprodutibilidade dos Testes
14.
Biochim Biophys Acta Proteins Proteom ; 1866(9): 952-962, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29860047

RESUMO

Thermotoga maritima Arginine Binding Protein (TmArgBP) is a valuable candidate for arginine biosensing in diagnostics. This protein is endowed with unusual structural properties that include an extraordinary thermal/chemical stability, a domain swapped structure that undergoes large tertiary and quaternary structural transition, and the ability to form non-canonical oligomeric species. As the intrinsic stability of TmArgBP allows for extensive protein manipulations, we here dissected its structure in two parts: its main body deprived of the swapping fragment (TmArgBP20-233) and the C-terminal peptide corresponding to the helical swapping element. Both elements have been characterized independently or in combination using a repertoire of biophysical/structural techniques. Present investigations clearly indicate that TmArgBP20-233 represents a better scaffold for arginine sensing compared to the wild-type protein. Moreover, our data demonstrate that the ligand-free and the ligand-bound forms respond very differently to this helix deletion. This drastic perturbation has an important impact on the ligand-bound form of TmArgBP20-233 stability whereas it barely affects its ligand-free state. The crystallographic structures of these forms provide a rationale to this puzzling observation. Indeed, the arginine-bound state is very rigid and virtually unchanged upon protein truncation. On the other hand, the flexible ligand-free TmArgBP20-233 is able to adopt a novel state as a consequence of the helix deletion. Therefore, the flexibility of the ligand-free form endows this state with a remarkable robustness upon severe perturbations. In this scenario, TmArgBP dissection highlights an intriguing connection between destabilizing/stabilizing effects and the overall flexibility that could operate also in other proteins.


Assuntos
Arginina/química , Proteínas de Bactérias/química , Thermotoga maritima/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Técnicas Biossensoriais , Clonagem Molecular , Ligantes , Modelos Moleculares , Ligação Proteica , Domínios Proteicos
15.
Biotechnol Appl Biochem ; 65(1): 89-98, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28805269

RESUMO

Human heparanase (HPSE) is an enzyme that degrades the extracellular matrix. It is implicated in a multiplicity of physiological and pathological processes encouraging angiogenesis and tumor metastasis. The protein is a heterodimer composed of a subunit of 8 kDa and another of 50 kDa. The two protein subunits are noncovalently associated. The cloning and expression of the two protein subunits in Escherichia coli and their subsequent purification to homogeneity under native conditions result in the production of an active HPSE enzyme. The substrate specificity of the HPSE was studied by docking of a putative substrate that is a designed oligosaccharide with the minimum recognition backbone, with the additional 2-N-sulfate and 6-O-sulfate groups at the nonreducing GlcN and a fluorogenic tag at the reducing extremity GlcN. To develop a quantitative fluorescence assay with this substrate would be extremely useful in studies on HPSE, as the HPSE cleavage of fluorogenic tag would result in a measurable response.


Assuntos
Clonagem Molecular , Escherichia coli/genética , Glucuronidase/biossíntese , Simulação de Acoplamento Molecular , Escherichia coli/metabolismo , Glucuronidase/isolamento & purificação , Glucuronidase/metabolismo , Humanos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Especificidade por Substrato
16.
Sensors (Basel) ; 19(1)2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30583457

RESUMO

In this paper, we present WaterSpy, a project developing an innovative, compact, cost-effective photonic device for pervasive water quality sensing, operating in the mid-IR spectral range. The approach combines the use of advanced Quantum Cascade Lasers (QCLs) employing the Vernier effect, used as light source, with novel, fibre-coupled, fast and sensitive Higher Operation Temperature (HOT) photodetectors, used as sensors. These will be complemented by optimised laser driving and detector electronics, laser modulation and signal conditioning technologies. The paper presents the WaterSpy concept, the requirements elicited, the preliminary architecture design of the device, the use cases in which it will be validated, while highlighting the innovative technologies that contribute to the advancement of the current state of the art.

17.
Biochim Biophys Acta ; 1864(7): 814-24, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27087545

RESUMO

The Arginine Binding Protein isolated from Thermotoga maritima (TmArgBP) is a protein endowed with several peculiar properties. We have previously shown that TmArgBP dimerization is a consequence of the swapping of the C-terminal helix. Here we explored the structural determinants of TmArgBP domain swapping and oligomerization. In particular, we report a mutational analysis of the residue Pro235, which is located in the hinge region of the swapping dimer. This residue was either replaced with a Gly-Lys dipeptide (TmArgBP(P235GK)) or a Gly residue (TmArgBP(P235G)). Different forms of these mutants were generated and extensively characterized using biophysical techniques. For both TmArgBP(P235GK) and TmArgBP(P235G) mutants, the occurrence of multiple oligomerization states (monomers, dimers and trimers) was detected. The formation of well-folded monomeric forms for these mutants indicates that the dimerization through C-terminal domain swapping observed in wild-type TmArgBP is driven by conformational restraints imposed by the presence of Pro235 in the hinge region. Molecular dynamics studies corroborate this observation by showing that Gly235 assumes conformational states forbidden for Pro residues in the TmArgBP(P235G) monomer. Unexpectedly, the trimeric forms present: (a) peculiar circular dichroism spectra, (b) a great susceptibility to heating, and (c) the ability to bind the Thioflavin T dye. The present findings clearly demonstrate that single-point mutations have an important impact on the TmArgBP oligomerization process. In a wider context, they also indicate that proteins endowed with an intrinsic propensity to swap have an easy access to states with altered structural and, possibly, functional properties.


Assuntos
Arginina/metabolismo , Proteínas de Transporte/química , Thermotoga maritima/química , Sequência de Aminoácidos , Varredura Diferencial de Calorimetria , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Prolina , Multimerização Proteica , Estabilidade Proteica
18.
Anal Biochem ; 525: 60-66, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28259516

RESUMO

The Thermotoga maritima arginine-binding protein (TmArgBP) has been modified to create a reagentless fluorescent protein biosensor. Two design methods for biosensor construction are compared: 1) solvent accessibility of environmentally-sensitive probes and 2) fluorescence deactivation due to photo-induced electron transfer (PET). Nine single cysteine TmArgBP mutants were created and labeled with three different environmentally sensitive fluorescent probes. These mutants demonstrated limited changes in fluorescence emission upon the addition of arginine. In contrast, the PET-based biosensor provides significant enhancements over the traditional approach and provides a fluorescence quenching mechanism that was capable of providing quantitative detection of arginine. Site-directed mutagenesis of TmArgBP was used to create attachment points for the fluorescent probe (K145C) and for an internal aromatic residue (D18X) to serve as the PET quencher. Both tyrosine and tryptophan, but not phenylalanine, were able to quench the emission of the fluorescent probe by more than 80% upon the addition of arginine. The dissociation constant for arginine ranged from 0.87 to 1.5 µM across the different sensors. This PET-based strategy provides a simple and broadly applicable approach for the analytical detection of small molecules that may be applied to any protein that exhibits conformational switching in a ligand dependent manner.


Assuntos
Arginina/análise , Técnicas Biossensoriais/métodos , Corantes Fluorescentes/química , Proteínas Periplásmicas de Ligação/metabolismo , Thermotoga maritima/metabolismo , Arginina/genética , Arginina/metabolismo , Proteínas de Bactérias , Sítios de Ligação , Fluorescência , Conformação Molecular , Mutagênese Sítio-Dirigida , Mutação/genética , Proteínas Periplásmicas de Ligação/química , Proteínas Periplásmicas de Ligação/genética , Ligação Proteica , Espectrometria de Fluorescência , Thermotoga maritima/genética , Thermotoga maritima/crescimento & desenvolvimento , Triptofano/química , Triptofano/genética , Triptofano/metabolismo
19.
Int J Mol Sci ; 18(9)2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28925982

RESUMO

The ability of d-glucose/d-galactose-binding protein (GGBP) to reversibly interact with its ligands, glucose and galactose, makes this protein an attractive candidate for sensing elements of glucose biosensors. This potential is largely responsible for attracting researchers to study the conformational properties of this protein. Previously, we showed that an increase in the fluorescence intensity of the fluorescent dye 6-bromoacetyl-2-dimetylaminonaphtalene (BADAN) is linked to the holo-form of the GGBP/H152C mutant in solutions containing sub-denaturing concentrations of guanidine hydrochloride (GdnHCl). It was hypothesized that low GdnHCl concentrations might lead to compaction of the protein, thereby facilitating ligand binding. In this work, we utilize BADAN fluorescence spectroscopy, intrinsic protein UV fluorescence spectroscopy, and isothermal titration calorimetry (ITC) to show that the sub-denaturing GdnHCl concentrations possess osmolyte-like stabilizing effects on the structural dynamics, conformational stability, and functional activity of GGBP/H152C and the wild type of this protein (wtGGBP). Our data are consistent with the model where low GdnHCl concentrations promote a shift in the dynamic distribution of the protein molecules toward a conformational ensemble enriched in molecules with a tighter structure and a more closed conformation. This promotes the increase in the configurational complementarity between the protein and glucose molecules that leads to the increase in glucose affinity in both GGBP/H152C and wtGGBP.


Assuntos
Proteínas de Escherichia coli/química , Simulação de Dinâmica Molecular , Proteínas de Transporte de Monossacarídeos/química , Desnaturação Proteica , Substituição de Aminoácidos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Guanidina/química , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Estabilidade Proteica
20.
Anal Bioanal Chem ; 408(23): 6329-36, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27395357

RESUMO

Ephedrine is one of the main precursor compounds used in the illegal production of amphetamines and related drugs. Actually, conventional analytical methods such as high-performance liquid chromatography (HPLC), capillary electrophoresis (CE), and gas chromatography-mass spectrometry (GC-MS) are used for the detection of ephedrine; sadly, these methods require qualified personnel and are time-consuming and expensive. In order to overcome these problems, in recent years, different methods have been developed based on the surface plasmon resonance (SPR) and electrochemical method. In this work, we present a simple, rapid, and effective method to detect the presence of ephedrine in solution, based on competitive fluorescence resonance energy transfer (FRET) assay. The antibody anti-ephedrine and ephedrine derivative were produced and labeled respectively, with two different fluorescent probes (donor and acceptor). The change in FRET signal intensity between donor and acceptor ephedrine compounds gives the possibility of detecting ephedrine traces of at least 0.81 ± 0.04 ppm (LOD). Graphical abstract A new Time-resolved Fluorescence Resonance Energy Transfer (FRET) assay for ephedrine detection.


Assuntos
Estimulantes do Sistema Nervoso Central/análise , Efedrina/análise , Transferência Ressonante de Energia de Fluorescência/métodos , Animais , Ephedra sinica/química , Corantes Fluorescentes/química , Imunoensaio/métodos , Imunoglobulina G/química , Limite de Detecção , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA