Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Transfusion ; 61(1): 108-123, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33073382

RESUMO

BACKGROUND: Red blood cells (RBCs) derived from patients who receive testosterone replacement therapy (TRT) may be considered eligible for component production and transfusion. The aim of this study was to identify testosterone-dependent changes in RBC metabolism and to evaluate its impact on susceptibility to hemolysis during cold storage. STUDY DESIGN AND METHODS: We characterized stored RBCs from two cohorts of TRT patients who were matched with control donors (no TRT) based upon sex, age, and ethnicity. We further evaluated the impact of testosterone deficiency (orchiectomy) on RBC metabolism in FVB/NJ mice. RBC metabolites were quantified by ultra-high-pressure liquid chromatography-mass spectrometry. RBC storage stability was determined in RBC units from TRT and controls by quantifying storage, osmotic, and oxidative hemolysis. RESULTS: Orchiectomy in mice was associated with significant (P < 0.05) changes in RBC metabolism as compared with intact males including increased levels of acyl-carnitines, long-chain fatty acids (eg, docosapentaenoic acids), arginine, and dopamine. Stored RBCs from TRT patients exhibited higher levels of pentose phosphate pathway metabolites, glutathione, and oxidized purines (eg, hypoxanthine), suggestive of increased activation of antioxidant pathways in this group. Further analyses indicated significant changes in free fatty acids and acyl-carnitines in response to testosterone therapies. With regard to hemolysis, TRT was associated with enhanced susceptibility to osmotic hemolysis. Correlation analyses identified acyl-carnitines as significant modifiers of RBC predisposition to osmotic and oxidative hemolysis. CONCLUSIONS: These observations provide new insights into testosterone-mediated changes in RBC metabolome and biology that may impact the storage capacity and posttransfusion efficacy of RBCs from TRT donors.


Assuntos
Preservação de Sangue/métodos , Carnitina/análogos & derivados , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Hemólise/fisiologia , Testosterona/deficiência , Testosterona/farmacologia , Animais , Arginina/sangue , Doadores de Sangue , Carnitina/sangue , Cromatografia Líquida de Alta Pressão , Estudos de Coortes , Correlação de Dados , Dopamina/sangue , Ácidos Erúcicos/sangue , Ácidos Graxos/sangue , Feminino , Glutationa/sangue , Terapia de Reposição Hormonal , Humanos , Masculino , Espectrometria de Massas , Redes e Vias Metabólicas/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos , Oxirredução , Via de Pentose Fosfato/fisiologia , Purinas/sangue , Proteína Tumoral 1 Controlada por Tradução
2.
Transfusion ; 61(2): 435-448, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33146433

RESUMO

BACKGROUND: Obesity is a global pandemic characterized by multiple comorbidities, including cardiovascular and metabolic diseases. The aim of this study was to define the associations between blood donor body mass index (BMI) and RBC measurements of metabolic stress and hemolysis. STUDY DESIGN AND METHODS: The associations between donor BMI (<25 kg/m2 , normal weight; 25-29.9 kg/m2 , overweight; and ≥30 kg/m2 , obese) and hemolysis (storage, osmotic, and oxidative; n = 18 donors) or posttransfusion recovery (n = 14 donors) in immunodeficient mice were determined in stored leukocyte-reduced RBC units. Further evaluations were conducted using the National Heart, Lung, and Blood Institute RBC-Omics blood donor databases of hemolysis (n = 13 317) and metabolomics (n = 203). RESULTS: Evaluations in 18 donors revealed that BMI was significantly (P < 0.05) and positively associated with storage and osmotic hemolysis. A BMI of 30 kg/m2 or greater was also associated with lower posttransfusion recovery in mice 10 minutes after transfusion (P = 0.026). Multivariable linear regression analyses in RBC-Omics revealed that BMI was a significant modifier for all hemolysis measurements, explaining 4.5%, 4.2%, and 0.2% of the variance in osmotic, oxidative, and storage hemolysis, respectively. In this cohort, obesity was positively associated (P < 0.001) with plasma ferritin (inflammation marker). Metabolomic analyses on RBCs from obese donors (44.1 ± 5.1 kg/m2 ) had altered membrane lipid composition, dysregulation of antioxidant pathways (eg, increased oxidized lipids, methionine sulfoxide, and xanthine), and dysregulation of nitric oxide metabolism, as compared to RBCs from nonobese (20.5 ± 1.0 kg/m2 ) donors. CONCLUSIONS: Obesity is associated with significant changes in RBC metabolism and increased susceptibility to hemolysis under routine storage of RBC units. The impact on transfusion efficacy warrants further evaluation.


Assuntos
Doadores de Sangue , Preservação de Sangue/métodos , Eritrócitos/metabolismo , Obesidade/sangue , Adulto , Animais , Índice de Massa Corporal , Temperatura Baixa , Membrana Eritrocítica/química , Transfusão de Eritrócitos , Eritrócitos/citologia , Feminino , Ferritinas/sangue , Testes Hematológicos , Hemólise/fisiologia , Humanos , Procedimentos de Redução de Leucócitos , Masculino , Lipídeos de Membrana/sangue , Metaboloma , Camundongos , Camundongos Endogâmicos NOD , Óxido Nítrico/sangue , Pressão Osmótica , Estresse Oxidativo
3.
Transfusion ; 60(11): 2633-2646, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32812244

RESUMO

BACKGROUND: Characteristics of red blood cells (RBCs) are influenced by donor variability. This study assessed quality and metabolomic variables of RBC subpopulations of varied biologic age in red blood cell concentrates (RCCs) from male and female donors to evaluate their contribution to the storage lesion. STUDY DESIGN AND METHODS: Red blood cell concentrates from healthy male (n = 6) and female (n = 4) donors were Percoll separated into less dense ("young", Y-RCCs) and dense ("old", O-RCCs) subpopulations, which were assessed weekly for 28 days for changes in hemolysis, mean cell volume (MCV), hemoglobin concentration (MCHC), hemoglobin autofluorescence (HGB), morphology index (MI), oxygen affinity (p50), rigidity, intracellular reactive oxygen species (ROS), calcium ([Ca2+ ]), and mass spectrometry-based metabolomics. RESULTS: Young RCCs having disc-to-discoid morphology showed higher MCV and MI, but lower MCHC, HGB, and rigidity than O-RCCs, having discoid-to-spheroid shape. By Day 14, Y-RCCs retained lower hemolysis and rigidity and higher p50 compared to O-RCCs. Donor sex analyses indicated that females had higher MCV, HGB, ROS, and [Ca2+ ] and lower hemolysis than male RBCs, in addition to having a decreased rate of change in hemolysis by Day 28. Metabolic profiling indicated a significant sex-related signature across all groups with increased markers of high membrane lipid remodeling and antioxidant capacity in Y-RCCs, whereas O-RCCs had increased markers of oxidative stress and decreased coping capability. CONCLUSION: The structural, functional, and metabolic dissimilarities of Y-RCCs and O-RCCs from female and male donors demonstrate RCC heterogeneity, where RBCs from females contribute less to the storage lesion and age slower than males.


Assuntos
Doadores de Sangue , Preservação de Sangue , Senescência Celular , Eritrócitos , Estresse Oxidativo , Adulto , Eritrócitos/classificação , Eritrócitos/citologia , Eritrócitos/metabolismo , Feminino , Humanos , Masculino
4.
Transfusion ; 60(4): 786-798, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32104927

RESUMO

BACKGROUND: Blood transfusion is a lifesaving intervention for millions of recipients worldwide every year. Storing blood makes this possible but also promotes a series of alterations to the metabolism of the stored erythrocyte. It is unclear whether the metabolic storage lesion is correlated with clinically relevant outcomes and whether strategies aimed at improving the metabolic quality of stored units, such as hypoxic storage, ultimately improve performance in the transfused recipient. STUDY DESIGN AND METHODS: Twelve healthy donor volunteers were recruited in a two-arm cross-sectional study, in which each subject donated 2 units to be stored under standard (normoxic) or hypoxic conditions (Hemanext technology). End-of-storage measurements of hemolysis and autologous posttransfusion recovery (PTR) were correlated to metabolomics measurements at Days 0, 21, and 42. RESULTS: Hypoxic red blood cells (RBCs) showed superior PTR and comparable hemolysis to donor-paired standard units. Hypoxic storage improved energy and redox metabolism (glycolysis and 2,3-diphosphoglycerate), improved glutathione and methionine homeostasis, decreased purine oxidation and membrane lipid remodeling (free fatty acid levels, unsaturation and hydroxylation, acyl-carnitines). Intra- and extracellular metabolites in these pathways (including some dietary purines) showed significant correlations with PTR and hemolysis, though the degree of correlation was influenced by sulfur dioxide (SO2 ) levels. CONCLUSION: Hypoxic storage improves energy and redox metabolism of stored RBCs, which results in improved posttransfusion recoveries in healthy autologous recipients-a Food and Drug Administration gold standard of stored blood quality. In addition, we identified candidate metabolic predictors of PTR for RBCs stored under standard and hypoxic conditions.


Assuntos
Preservação de Sangue/métodos , Eritrócitos/metabolismo , Hipóxia , Adulto , Doadores de Sangue , Preservação de Sangue/normas , Transfusão de Sangue/normas , Estudos Transversais , Feminino , Voluntários Saudáveis , Hemólise , Humanos , Masculino , Recuperação de Função Fisiológica , Transplante Autólogo
5.
J Trauma Acute Care Surg ; 83(3): 491-495, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28590356

RESUMO

BACKGROUND: Trauma is the leading cause of mortality under the age of 40 years. Recent observations on metabolic reprogramming during hypoxia and ischemia indicate that hypoxic mitochondrial uncoupling promotes the generation of succinate, which in turn mediates reperfusion injury and inflammatory sequelae upon reoxygenation. Plasma levels of succinate significantly increase in response to trauma and hemorrhage in experimental models and clinical samples, suggesting that succinate may represent a candidate marker of systemic perfusion in trauma. METHODS: Quantitative mass spectrometry-based metabolomics was used to quantify succinate and lactate in 595 plasma samples from severely injured patients enrolled at the Denver Health Medical Center, a Level I trauma center in Denver, Colorado. RESULTS: A total of 95 severely injured patients were sampled for up to 10 time points (595 total samples), from field blood to 7 days postinjury. Results indicate that plasma levels of succinate increased up to 25.9-fold in deceased patients versus the median of the surviving patients (p = 2.75e-100; receiver operating characteristic area under the curve, 0.911). On the other hand, only 2.4-fold changes increases in lactate were observed (p = 5.8e-21; area under the curve, 0.874). CONCLUSION: Succinate represents a uniquely sensitive biomarker of postshock metabolic derangement and may be an important mediator of sequelae. LEVEL OF EVIDENCE: Prognostic study, level III.


Assuntos
Estado Terminal , Metabolômica/métodos , Plasma , Ácido Succínico/sangue , Ferimentos e Lesões/sangue , Ferimentos e Lesões/mortalidade , Adulto , Biomarcadores/sangue , Colorado , Feminino , Humanos , Lactatos/sangue , Masculino , Espectrometria de Massas , Valor Preditivo dos Testes , Prognóstico , Centros de Traumatologia
6.
J Trauma Acute Care Surg ; 83(4): 635-642, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28463938

RESUMO

BACKGROUND: Tissue injury and hemorrhagic shock induce significant systemic metabolic reprogramming in animal models and critically injured patients. Recent expansions of the classic concepts of metabolomic aberrations in tissue injury and hemorrhage opened the way for novel resuscitative interventions based on the observed abnormal metabolic demands. We hypothesize that metabolic demands and resulting metabolic signatures in pig plasma will vary in response to isolated or combined tissue injury and hemorrhagic shock. METHODS: A total of 20 pigs underwent either isolated tissue injury, hemorrhagic shock, or combined tissue injury and hemorrhagic shock referenced to a sham protocol (n = 5/group). Plasma samples were analyzed by UHPLC-MS. RESULTS: Hemorrhagic shock promoted a hypermetabolic state. Tissue injury alone dampened metabolic responses in comparison to sham and hemorrhagic shock, and attenuated the hypermetabolic state triggered by shock with respect to energy metabolism (glycolysis, glutaminolysis, and Krebs cycle). Tissue injury and hemorrhagic shock had a more pronounced effect on nitrogen metabolism (arginine, polyamines, and purine metabolism) than hemorrhagic shock alone. CONCLUSION: Isolated or combined tissue injury and hemorrhagic shock result in distinct plasma metabolic signatures. These findings indicate that optimized resuscitative interventions in critically ill patients are possible based on identifying the severity of tissue injury and hemorrhage.


Assuntos
Metaboloma , Metabolômica/métodos , Choque Hemorrágico/sangue , Ferimentos e Lesões/sangue , Animais , Lesões por Esmagamento/sangue , Modelos Animais de Doenças , Metabolismo Energético , Fraturas do Fêmur/sangue , Intestinos/lesões , Masculino , Plasma , Suínos , Porco Miniatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA