Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(1)2021 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-35008660

RESUMO

Insulin and Insulin-like growth factors (IGFs) perform key roles during embryonic development, regulating processes of cell proliferation and survival. The IGF signalling pathway comprises two IGFs (IGF1, IGF2), two IGF receptors (IGFR1, IGFR2), and six IGF binding proteins (IGFBPs) that regulate IGF transport and availability. The IGF signalling pathway is essential for cardiac development. IGF2 is the primary mitogen inducing ventricular cardiomyocyte proliferation and morphogenesis of the compact myocardial wall. Conditional deletion of the Igf1r and the insulin receptor (Insr) genes in the myocardium results in decreased cardiomyocyte proliferation and ventricular wall hypoplasia. The significance of the IGF signalling pathway during embryonic development has led to consider it as a candidate for adult cardiac repair and regeneration. In fact, paracrine IGF2 plays a key role in the transient regenerative ability of the newborn mouse heart. We aimed to review the current knowledge about the role played by the IGF signalling pathway during cardiac development and also the clinical potential of recapitulating this developmental axis in regeneration of the adult heart.


Assuntos
Coração/crescimento & desenvolvimento , Miocárdio/metabolismo , Regeneração , Transdução de Sinais , Somatomedinas/metabolismo , Animais , Coração/fisiologia , Humanos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Morfogênese , Receptor IGF Tipo 1/metabolismo , Receptor IGF Tipo 2/metabolismo
2.
Angiogenesis ; 23(4): 531-541, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32613361

RESUMO

The development of vascular system in vertebrates has been traditionally explained by early vasculogenic assembly of angioblasts followed by angiogenic outgrowth of pre-existing vessels. The discovery of adult endothelial progenitor cells (Asahara et al. in Science 275(5302):964-967, 1997) challenged this view, since postnatal vascular growth could be accomplished by recruitment of circulating cells with the ability to differentiate into endothelial cells. However, the existence of embryonic circulating endothelial progenitor cells and their actual contribution to vascular development is far less known. We review in this paper the literature concerning the features, origin and physiological functions of embryonic and foetal circulating endothelial progenitors. Our review includes the early (E7.5) progenitors isolated from yolk sac, the hematovascular progenitors identified in the foetal liver, the yolk sac-derived erythro-myeloid progenitors, circulating hematopoietic cells from the G2-GATA4 lineage and the endothelial colony-forming cells isolated from the placenta and umbilical cord blood. We highlight the need of further characterization of these populations and the relationships between them.


Assuntos
Movimento Celular , Embrião de Mamíferos/citologia , Embrião não Mamífero/citologia , Células Progenitoras Endoteliais/citologia , Animais , Linhagem da Célula , Humanos , Fígado/citologia , Fígado/embriologia
3.
J Cardiovasc Dev Dis ; 10(5)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37233178

RESUMO

The Wilms tumor suppressor gene (Wt1) encodes a C2H2-type zinc-finger transcription factor that participates in transcriptional regulation, RNA metabolism, and protein-protein interactions. WT1 is involved in the development of several organs, including the kidneys and gonads, heart, spleen, adrenal glands, liver, diaphragm, and neuronal system. We previously provided evidence of transient WT1 expression in about 25% of cardiomyocytes of mouse embryos. Conditional deletion of Wt1 in the cardiac troponin T lineage caused abnormal cardiac development. A low expression of WT1 has also been reported in adult cardiomyocytes. Therefore, we aimed to explore its function in cardiac homeostasis and in the response to pharmacologically induced damage. Silencing of Wt1 in cultured neonatal murine cardiomyocytes provoked alterations in mitochondrial membrane potential and changes in the expression of genes related to calcium homeostasis. Ablation of WT1 in adult cardiomyocytes by crossing αMHCMerCreMer mice with homozygous WT1-floxed mice induced hypertrophy, interstitial fibrosis, altered metabolism, and mitochondrial dysfunction. In addition, conditional deletion of WT1 in adult cardiomyocytes increased doxorubicin-induced damage. These findings suggest a novel role of WT1 in myocardial physiology and protection against damage.

4.
Front Cell Dev Biol ; 9: 683861, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368133

RESUMO

Expression of Wilms' tumor suppressor transcription factor (WT1) in the embryonic epicardium is essential for cardiac development, but its myocardial expression is little known. We have found that WT1 is expressed at low levels in 20-25% of the embryonic cardiomyocytes. Conditional ablation of WT1 using a cardiac troponin T driver (Tnnt2 Cre ) caused abnormal sinus venosus and atrium development, lack of pectinate muscles, thin ventricular myocardium and, in some cases, interventricular septum and cardiac wall defects, ventricular diverticula and aneurisms. Coronary development was normal and there was not embryonic lethality, although survival of adult mutant mice was reduced probably due to perinatal mortality. Adult mutant mice showed electrocardiographic anomalies, including increased RR and QRS intervals, and decreased PR intervals. RNASeq analysis identified differential expression of 137 genes in the E13.5 mutant heart as compared to controls. GO functional enrichment analysis suggested that both calcium ion regulation and modulation of potassium channels are deeply altered in the mutant myocardium. In summary, together with its essential function in the embryonic epicardium, myocardial WT1 expression is also required for normal cardiac development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA