Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(14): e2206716, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36604987

RESUMO

The mutations of bacteria due to the excessive use of antibiotics, and generation of antibiotic-resistant bacteria have made the development of new antibacterial compounds a necessity. MXenes have emerged as biocompatible transition metal carbide structures with extensive biomedical applications. This is related to the MXenes' unique combination of properties, including multifarious elemental compositions, 2D-layered structure, large surface area, abundant surface terminations, and excellent photothermal and photoelectronic properties. The focus of this review is the antibacterial application of MXenes, which has attracted the attention of researchers since 2016. A quick overview of the synthesis strategies of MXenes is provided and then summarizes the effect of various factors (including structural properties, optical properties, surface charges, flake size, and dispersibility) on the biocidal activity of MXenes. The main mechanisms for deactivating bacteria by MXenes are discussed in detail including rupturing of the bacterial membrane by sharp edges of MXenes nanoflakes, generating the reactive oxygen species (ROS), and photothermal deactivating of bacteria. Hybridization of MXenes with other organic and inorganic materials can result in materials with improved biocidal activities for different applications such as wound dressings and water purification. Finally, the challenges and perspectives of MXene nanomaterials as biocidal agents are presented.


Assuntos
Antibacterianos , Nanoestruturas , Bandagens , Mutação
2.
Environ Sci Technol ; 52(9): 5246-5258, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29589940

RESUMO

This work shows that incorporating highly compatible polyrhodanine nanoparticles (PRh-NPs) into a polyamide (PA) active layer allows for fabricating forward osmosis (FO) thin-film composite (TFC)-PRh membranes that have simultaneously improved antimicrobial, antifouling, and transport properties. To the best of our knowledge, this is the first reported study of its kind to this date. The presence of the PRh-NPs on the surface of the TFC-PRh membranes active layers is evaluated using FT-IR spectroscopy, SEM, and XPS. The microscopic interactions and their impact on the compatibility of the PRh-NPs with the PA chains were studied using molecular dynamics simulations. When tested in forward osmosis, the TFC-PRh-0.01 membrane (with 0.01 wt % PRh) shows significantly improved permeability and selectivity because of the small size and the high compatibility of the PRh-NPs with PA chains. For example, the TFC-PRh-0.01 membrane exhibits a FO water flux of 41 l/(m2·h), higher than a water flux of 34 l/(m2·h) for the pristine TFC membrane, when 1.5 molar NaCl was used as draw solution in the active-layer feed-solution mode. Moreover, the reverse solute flux of the TFC-PRh-0.01 membrane decreases to about 115 mmol/(m2·h) representing a 52% improvement in the reverse solute flux of this membrane in comparison to the pristine TFC membrane. The surfaces of the TFC-PRh membranes were found to be smoother and more hydrophilic than those of the pristine TFC membrane, providing improved antifouling properties confirmed by a flux decline of about 38% for the TFC-PRh-0.01 membranes against a flux decline of about 50% for the pristine TFC membrane when evaluated with a sodium alginate solution. The antimicrobial traits of the TFC-PRh-0.01 membrane evaluated using colony-forming units and fluorescence imaging indicate that the PRh-NPs hinder cell deposition on the TFC-PRh-0.01 membrane surface effectively, limiting biofilm formation.


Assuntos
Anti-Infecciosos , Nanopartículas , Purificação da Água , Membranas Artificiais , Osmose , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Adv Mater ; 35(31): e2300422, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37095074

RESUMO

MXenes, 2D transition metal carbides, nitrides, and carbonitrides, have been investigated for diverse applications since their discovery; however, their life-cycle assessment (LCA) has not been studied. Here, a "cradle to gate" LCA is performed to assess the cumulative energy demand (CED) and environmental impacts of lab-scale synthesis of Ti3 C2 Tx , the most researched MXene composition. Electromagnetic interface (EMI) shielding is selected as it is one of MXenes' most promising applications and LCA of Ti3 C2 Tx synthesis is compared to aluminum and copper foils, two typical EMI-shielding materials. Two laboratory-scale MXene synthesis systems-gram and kilogram batches-are examined. The CED and environmental implications of Ti3 C2 Tx synthesis are investigated based on its precursor production, selective etching, delamination processes, laboratory location, energy mix, and raw material type. These results show that laboratory electricity usage for the synthesis processes accounts for >70% of the environmental impacts. Manufacturing 1.0 kg of industrial-scale aluminum and copper foil releases 23.0 kg and 8.75 kg of CO2 , respectively, while 1.0 kg of lab-scale MXene synthesis releases 428.10 kg. Chemical usage is less impactful than electricity, which suggests that recycled resources and renewable energy can make MXene synthesis more sustainable. Understanding MXene LCA helps the industrialization of this material.

4.
Biomater Adv ; 139: 213013, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35882158

RESUMO

Herein, silver-based metal-organic framework (AgMOF) and its graphene oxide (GO)-decorated nanocomposite (GO-AgMOF) are proposed for use in emerging biomedical applications. The nanocomposites are characterized, and hence, in vitro apoptotic and antibacterial features of AgMOF and GO-AgMOF nanomaterials were investigated. An MTT cytocompatibility assay indicates that these nanomaterials have dose-dependent toxicity in contact with SW480, colon adenocarcinoma cells. In addition, the cell death mechanism was explored by analyzing flow cytometry and caspase activity. Furthermore, the expressions of pro-apoptotic and anti-apoptotic genes were investigated using quantitative polymerase chain reaction (qPCR). Comparing the control group with the groups treated by the nanomaterials indicates up-regulation of the BAX/BCl2 ratio. We also measured the minimum inhibitory concentration (MIC) and minimum bacterial concentration (MBC) of these nanomaterials acting on S. mutans and S. aureus, which indicates excellent antibacterial properties. Showing inhibition effect on the viability of cancerous cells through apoptosis and antibacterial effects simultaneously, AgMOF and GO-AgMOF can be regarded as potential therapeutics for cancer.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Estruturas Metalorgânicas , Nanocompostos , Antibacterianos/farmacologia , Humanos , Estruturas Metalorgânicas/farmacologia , Nanocompostos/uso terapêutico , Staphylococcus aureus
5.
ACS Appl Mater Interfaces ; 12(34): 38285-38298, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32846472

RESUMO

In this work, nanorods with high antibacterial properties were synthesized with silver acetate as the metal source and 2-aminoterephthalic acid as the organic linker and were then embedded into thin-film composite (TFC) membranes to amend their performance as well as to alleviate biofouling. Silver metal-organic framework (Ag-MOF) nanorods with a length smaller than 40 nm were incorporated within the polyamide thin selective layer of the membranes during interfacial polymerization. The interaction of the synthesized nanorods with the polyamide was favored because of the presence of amine-containing functional groups on the nanorod's surface. The results of X-ray photoelectron spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and atomic force microscopy characterizations proved the presence of Ag-MOF nanorods in the selective layer of thin-film nanocomposite (TFN) membranes. TFN membranes demonstrated improved water permeance, salt selectivity, and superior antibacterial properties. Specifically, the increased hydrophilicity and antibacterial potential of the TFN membranes led to a synergetic effect toward biofouling mitigation. The number of live bacteria attached to the surface of the neat TFC membrane decreased by more than 92% when a low amount of Ag-MOF nanorods (0.2 wt %) was applied. Following contact of the TFN membrane surface with Escherichia coli and Staphylococcus aureus, full inactivation, and degradation of bacteria cells were observed with microscopy, colony-forming unit tests, and disc inhibition zone analyses. This result translated to a negligible amount of the biofilm formed on the active layer. Indeed, the incorporation of Ag-MOF nanorods decreased the metal-ion release rate and therefore provided prolonged antibacterial performance.


Assuntos
Incrustação Biológica/prevenção & controle , Membranas Artificiais , Estruturas Metalorgânicas/química , Nanotubos/química , Prata/química , Escherichia coli/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Nanotubos/toxicidade , Nylons/química , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície
6.
ACS Appl Mater Interfaces ; 12(32): 36287-36300, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32677425

RESUMO

In this study, a polyamide forward osmosis membrane was functionalized with zwitterions followed by the in situ growth of metal-organic frameworks with silver as a metal core (Ag-MOFs) to improve its antibacterial and antifouling activity. First, 3-bromopropionic acid was grafted onto the membrane surface after its activation with N,N-diethylethylenediamine. Then, the in situ growth of Ag-MOFs was achieved by a simple membrane immersion sequentially in a silver nitrate solution and in a ligand solution (2-methylimidazole), exploiting the underlying zwitterions as binding sites for the metal. The successful membrane functionalization and the enhanced surface wettability were verified through an array of characterization techniques. When evaluated in forward osmosis tests, the modified membranes exhibited high performance and improved permeability compared to pristine membranes. Static antibacterial experiments, evaluated by confocal microscopy and colony-forming unit plate count, resulted in a 77% increase in the bacterial inhibition rate due to the activity of the Ag-MOFs. Microscopy micrographs of the Escherichia coli bacteria suggested the deterioration of the biological cells. The antifouling properties of the functionalized membranes translated into a significantly lower flux decline in forward osmosis filtrations. These modified surfaces displayed negligible depletion of silver ions over 30 days, confirming the stable immobilization of Ag-MOFs on their surface.


Assuntos
Antibacterianos/química , Estruturas Metalorgânicas/química , Nylons/química , Prata/química , Incrustação Biológica/prevenção & controle , Escherichia coli/efeitos dos fármacos , Etilenodiaminas/química , Filtração , Imidazóis/química , Membranas Artificiais , Osmose , Permeabilidade , Polímeros/química , Propionatos/química , Sulfonas/química , Propriedades de Superfície , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA