Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Exp Parasitol ; 217: 107958, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32730769

RESUMO

Anaplasma marginale is the causative agent of the severe bovine anaplasmosis. The tick Rhipicephalus microplus is one of the main vectors of A. marginale in tropical and subtropical regions of the world. After the tick bite, the bacterium invades and proliferates within the bovine erythrocytes leading to anemia, impairment of milk production and weight loss. In addition, infection can cause abortion and high mortality in areas of enzootic instability. Immunization with live and inactivated vaccines are employed to control acute bovine anaplasmosis. However, they do not prevent persistent infection. Consequently, infected animals, even if immunized, are still reservoirs of the bacterium and contribute to its dissemination. Antimicrobials are largely employed for the prophylaxis of bovine anaplasmosis. However, they are often used in sublethal doses which may select pre-existing resistant bacteria and induce genetic or phenotypic variations. Therefore, we propose a new standardized in vitro assay to evaluate the susceptibility of A. marginale strains to different antimicrobials. This tool will help health professionals to choose the more adequate treatment for each herd which will prevent the selection and spread of resistant strains. For that, we initially evaluated the antimicrobial susceptibility of two field isolates of A. marginale (Jaboticabal and Palmeira) infecting bovines. The least susceptible strain (Jaboticabal) was used for the standardization of an antimicrobial assay using a culture of Ixodes scapularis-derived tick cell line, ISE6. Results showed that enrofloxacin (ENRO) at 0.25, 1 or 4 µg/mL and oxytetracycline (OTC) at 4 or 16 µg/mL are the most efficient treatments, followed by OTC at 1 µg/mL and imidocarb dipropionate (IMD) at 1 or 4 µg/mL. In addition, this proposed tool has technical advantages compared to the previously established bovine erythrocyte culture. Thereby, it may be used to guide cattle farmers to the correct use of antimicrobials. The choice of the most suitable antimicrobial is essential to eliminate persistent infections, prevent the spread of resistant strains and help controlling of bovine anaplasmosis.


Assuntos
Anaplasma marginale/efeitos dos fármacos , Anaplasmose/prevenção & controle , Antibacterianos/farmacologia , Vetores Aracnídeos/citologia , Doenças dos Bovinos/prevenção & controle , Rhipicephalus/citologia , Anaplasmose/tratamento farmacológico , Anaplasmose/microbiologia , Animais , Antibacterianos/uso terapêutico , Vetores Aracnídeos/parasitologia , Brasil , Bovinos , Doenças dos Bovinos/tratamento farmacológico , Doenças dos Bovinos/microbiologia , Linhagem Celular , Enrofloxacina/farmacologia , Eritrócitos/microbiologia , Imidocarbo/análogos & derivados , Imidocarbo/farmacologia , Imidocarbo/uso terapêutico , Masculino , Testes de Sensibilidade Microbiana , Oxitetraciclina/farmacologia , Oxitetraciclina/uso terapêutico , Reação em Cadeia da Polimerase em Tempo Real , Rhipicephalus/parasitologia
2.
Circulation ; 128(3): 254-66, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23817575

RESUMO

BACKGROUND: Generation of active procoagulant cofactor factor Va (FVa) and its subsequent association with the enzyme activated factor X (FXa) to form the prothrombinase complex is a pivotal initial event in blood coagulation and has been the subject of investigative effort, speculation, and controversy. The current paradigm assumes that FV activation is initiated by limited proteolysis by traces of (meizo) thrombin. METHODS AND RESULTS: Recombinant tick salivary protein TIX-5 was produced and anticoagulant properties were studied with the use of plasma, whole blood, and purified systems. Here, we report that TIX-5 specifically inhibits FXa-mediated FV activation involving the B domain of FV and show that FXa activation of FV is pivotal for plasma and blood clotting. Accordingly, tick feeding is impaired on TIX-5 immune rabbits, displaying the in vivo importance of TIX-5. CONCLUSIONS: Our data elucidate a unique molecular mechanism by which ticks inhibit the host's coagulation system. From our data, we propose a revised blood coagulation scheme in which direct FXa-mediated FV activation occurs in the initiation phase during which thrombin-mediated FV activation is restrained by fibrinogen and inhibitors.


Assuntos
Anticoagulantes/farmacologia , Proteínas de Artrópodes/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Fator V/metabolismo , Fator Xa/metabolismo , Proteínas e Peptídeos Salivares/farmacologia , Animais , Anticoagulantes/sangue , Anticoagulantes/química , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Coagulação Sanguínea/fisiologia , Testes de Coagulação Sanguínea , Relação Dose-Resposta a Droga , Fator V/antagonistas & inibidores , Inibidores do Fator Xa , Comportamento Alimentar , Fibrinogênio/metabolismo , Humanos , Ixodes/química , Ixodes/genética , Ixodes/fisiologia , Mutagênese , Estrutura Terciária de Proteína , Coelhos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Proteínas e Peptídeos Salivares/química , Proteínas e Peptídeos Salivares/genética , Ressonância de Plasmônio de Superfície , Trombina/metabolismo
3.
Amino Acids ; 46(11): 2573-86, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25106507

RESUMO

Although glycine-rich antimicrobial peptides (AMPs) are found in animals and plants, very little has been reported on their chemistry, structure activity-relationship, and properties. We investigated those topics for Shepherin I (Shep I), a glycine-rich AMP with the unique amino acid sequence G(1)YGGHGGHGGHGGHGGHGGHGHGGGGHG(28). Shep I and analogues were synthesized by the solid-phase method at 60 °C using conventional heating. Purification followed by chemical characterization confirmed the products' identities and high purity. Amino acid analysis provided their peptide contents. All peptides were active against the clinically important Candida species, but ineffective against bacteria and mycelia fungi. Truncation of the N- or C-terminal portion reduced Shep I antifungal activity, the latter being more pronounced. Carboxyamidation of Shep I did not affect the activity against C. albicans or C. tropicalis, but increased activity against S. cerevisiae. Carboxyamidated analogues Shep I (3-28)a and Shep I (6-28)a were equipotent to Shep I and Shep Ia against Candida species. As with most cationic AMPs, all peptides had their activity significantly reduced in high-salt concentrations, a disadvantage that is defeated if 10 µM ZnCl2 is present. At 100 µM, the peptides were practically not hemolytic. Shep Ia also killed C. albicans MDM8 and ATCC 90028 cells. Fluo-Shep Ia, an analogue labeled with 5(6)-carboxyfluorescein, was rapidly internalized by C. albicans MDM8 cells, a salt-sensitive process dependent on metabolic energy and temperature. Altogether, such results shed light on the chemistry, structural requirements for activity, and other properties of candidacidal glycine-rich peptides. Furthermore, they show that Shep Ia may have strong potential for use in topical application.


Assuntos
Peptídeos/química , Proteínas de Plantas/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Aminoácidos/química , Anti-Infecciosos/química , Bactérias/metabolismo , Candida/metabolismo , Candida albicans , Membrana Celular/metabolismo , Separação Celular , Dicroísmo Circular , Citometria de Fluxo , Glicina/química , Histidina/química , Cinética , Testes de Sensibilidade Microbiana , Microscopia Confocal , Dados de Sequência Molecular , Peptídeos/farmacologia , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Temperatura
4.
J Pept Sci ; 20(6): 421-8, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24706599

RESUMO

Gomesin (Gm) has a broad antimicrobial activity making it of great interest for development of drugs. In this study, we analyzed three Gm analogs, [Trp(1) ]-Gm, [Trp(7) ]-Gm, and [Trp(9) ]-Gm, in an attempt to gain insight into the contributions of different regions of the peptide sequence to its activity. The incorporation of the tryptophan residue in different positions has no effect on the antimicrobial and hemolytic activities of the Gm analogs in relation to Gm. Spectroscopic studies (circular dichroism, fluorescence and absorbance) of Gm and its analogs were performed in the presence of SDS, below and above its critical micelle concentration (CMC) (~8 mM), in order to monitor structural changes induced by the interaction with this anionic surfactant (0-15 mM). Interestingly, we found that the analogs interact more strongly with SDS at low concentrations (0.3-6.0 mM) than close to or above its CMC. This suggests that SDS monomers are able to cover the whole peptide, forming large detergent-peptide aggregates. On the other hand, the peptides interact differently with SDS micelles, inserting partially into the micelle core. Among the peptides, Trp in position 1 becomes more motionally-restricted in the presence of SDS, probably because this residue is located at the N-terminal region, which presents higher conformational freedom to interact stronger with SDS molecules. Trp residues in positions 7 and 9, close to and in the region of the turn of the molecule, respectively, induced a more constrained structure and the compounds cannot insert deeper into the micelle core or be completely buried by SDS monomers.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Triptofano/química , Antibacterianos/síntese química , Antibacterianos/química , Antifúngicos/síntese química , Antifúngicos/química , Peptídeos Catiônicos Antimicrobianos/síntese química , Candida albicans/efeitos dos fármacos , Relação Dose-Resposta a Droga , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Micrococcus luteus/efeitos dos fármacos , Relação Estrutura-Atividade
5.
Front Cell Infect Microbiol ; 13: 1260390, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900319

RESUMO

Adult Amblyomma sculptum and Amblyomma aureolatum ticks are partially refractory to Rickettsia rickettsii when fed on infected hosts, hindering the functional characterization of potentially protective targets in the bacterial acquisition. In the current study, we used the anal pore route to infect adult A. sculptum and A. aureolatum ticks with R. rickettsii and to assess the effects of the knockdown of microplusin in infection control. The anal pore route was efficient to infect both species, resulting in a prevalence of around 100% of infected ticks. Higher loads of R. rickettsii were detected in microplusin-silenced A. aureolatum in relation to the control, as previously obtained when microplusin-silenced ticks were fed on R. rickettsii-infected rabbits. This is the first report showing R. rickettsii infection through the anal pore in Amblyomma ticks, highlighting this route as a powerful tool to assess the role played by additional targets in the control of pathogens.


Assuntos
Ixodidae , Rickettsia , Febre Maculosa das Montanhas Rochosas , Carrapatos , Animais , Coelhos , Rickettsia rickettsii , Carrapatos/microbiologia , Amblyomma , Febre Maculosa das Montanhas Rochosas/microbiologia , Ixodidae/microbiologia , Brasil/epidemiologia
6.
Parasit Vectors ; 16(1): 96, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36899435

RESUMO

BACKGROUND: The tick Amblyomma sculptum is the major vector of Rickettsia rickettsii, the causative agent of the highly lethal Brazilian spotted fever. It has been shown that R. rickettsii inhibits apoptosis in both human endothelial cells and tick cells. Apoptosis is regulated by different factors, among which inhibitors of apoptosis proteins (IAPs) play a central role. In the study reported here, we selected an IAP of A. sculptum that has not yet been characterized to assess its role in cell death and to determine the effects of its gene silencing on tick fitness and R. rickettsii infection. METHODS: An A. sculptum cell line (IBU/ASE-16) was treated with specific double-stranded RNA (dsRNA) for either IAP (dsIAP) or green fluorescent protein (dsGFP; as a control). The activity of caspase-3 and the exposure of phosphatidylserine were determined in both groups. In addition, unfed adult ticks, infected or not infected with R. rickettsii, were treated with either dsIAP or dsGFP and allowed to feed on noninfected rabbits. In parallel, noninfected ticks were allowed to feed on an R. rickettsii-infected rabbit. Ticks (infected or not with R. rickettsii) that remained unfed were used as a control. RESULTS: Caspase-3 activity and the externalization of phosphatidylserine were significantly higher in IBU/ASE-16 cells treated with dsIAP than in those treated with dsGFP. The mortality rates of ticks in the dsIAP group were much higher than those in the dsGFP group when they were allowed to feed on rabbits, independent of the presence of R. rickettsii. Conversely, lower mortality rates were recorded in unfed ticks. CONCLUSIONS: Our results show that IAP negatively regulates apoptosis in A. sculptum cells. Moreover, IAP-silenced ticks experienced higher mortality rates following the acquisition of a blood meal, suggesting that feeding may trigger the activation of apoptosis in the absence of this physiological regulator. These findings indicate that IAP is a potential antigen for an anti-tick vaccine.


Assuntos
Ixodidae , Febre Maculosa das Montanhas Rochosas , Carrapatos , Animais , Humanos , Coelhos , Carrapatos/microbiologia , Amblyomma , Caspase 3/metabolismo , Ixodidae/genética , Proteínas Inibidoras de Apoptose/metabolismo , Células Endoteliais , Fosfatidilserinas/metabolismo , Rickettsia rickettsii/fisiologia , Brasil
7.
Cell Immunol ; 275(1-2): 5-11, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22541370

RESUMO

Mygalin is an antibacterial molecule isolated from the hemocytes of the spider Acanthoscurria gomesiana. It was identified as bis-acylpolyamine spermidine. We evaluated the modulator effects of synthetic Mygalin in the innate immune response. We demonstrate that Mygalin induces IFN-γ synthesis by splenocytes increasing the nitrite secretion by splenocytes and macrophages. A specific inhibitor of iNOS abrogated Mygalin-induced nitrite production in macrophages independent of IFN-γ activation. In addition, Mygalin-activated macrophages produced TNF-α but not IL-1ß, demonstrating that Mygalin does not act directly on the inflammasome. Furthermore, this compound did not affect spontaneous or Concanavalin A-induced proliferative responses by murine splenocytes and did not induce IL-5 or apoptosis of splenocytes or bone marrow-derived macrophages. These data provide evidence that Mygalin modulates the innate immune response by inducing IFN-γ and NO synthesis. The combined immune regulatory and antibacterial qualities of Mygalin should be explored as a strategy to enhance immune responses in infection.


Assuntos
Imunidade Inata/efeitos dos fármacos , Poliaminas/farmacologia , Espermidina/análogos & derivados , Aranhas/química , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Feminino , Interferon gama/imunologia , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nitritos/metabolismo , Espermidina/farmacologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo
8.
BMC Microbiol ; 12: 28, 2012 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-22394555

RESUMO

BACKGROUND: Antimicrobial peptides are present in animals, plants and microorganisms and play a fundamental role in the innate immune response. Gomesin is a cationic antimicrobial peptide purified from haemocytes of the spider Acanthoscurria gomesiana. It has a broad-spectrum of activity against bacteria, fungi, protozoa and tumour cells. Candida albicans is a commensal yeast that is part of the human microbiota. However, in immunocompromised patients, this fungus may cause skin, mucosal or systemic infections. The typical treatment for this mycosis comprises three major categories of antifungal drugs: polyenes, azoles and echinocandins; however cases of resistance to these drugs are frequently reported. With the emergence of microorganisms that are resistant to conventional antibiotics, the development of alternative treatments for candidiasis is important. In this study, we evaluate the efficacy of gomesin treatment on disseminated and vaginal candidiasis as well as its toxicity and biodistribution. RESULTS: Treatment with gomesin effectively reduced Candida albicans in the kidneys, spleen, liver and vagina of infected mice. The biodistribution of gomesin labelled with technetium-99 m showed that the peptide is captured in the kidneys, spleen and liver. Enhanced production of TNF-α, IFN-γ and IL-6 was detected in infected mice treated with gomesin, suggesting an immunomodulatory activity. Moreover, immunosuppressed and C. albicans-infected mice showed an increase in survival after treatment with gomesin and fluconazole. Systemic administration of gomesin was also not toxic to the mice. CONCLUSIONS: Gomesin proved to be effective against experimental Candida albicans infection. It can be used as an alternative therapy for candidiasis, either alone or in combination with fluconazole. Gomesin's mechanism is not fully understood, but we hypothesise that the peptide acts through the permeabilisation of the yeast membrane leading to death and/or releasing the yeast antigens that trigger the host immune response against infection. Therefore, data presented in this study reinforces the potential of gomesin as a therapeutic antifungal agent in both humans and animals.


Assuntos
Antifúngicos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Candidíase Vulvovaginal/tratamento farmacológico , Candidíase/tratamento farmacológico , Aranhas/química , Animais , Peptídeos Catiônicos Antimicrobianos/farmacocinética , Candida albicans/efeitos dos fármacos , Feminino , Fluconazol/uso terapêutico , Interferon gama/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Fator de Necrose Tumoral alfa/metabolismo
9.
J Pept Sci ; 18(9): 588-98, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22865764

RESUMO

Gomesin (Gm) was the first antimicrobial peptide (AMP) isolated from the hemocytes of a spider, the Brazilian mygalomorph Acanthoscurria gomesiana. We have been studying the properties of this interesting AMP, which also displays anticancer, antimalarial, anticryptococcal and anti-Leishmania activities. In the present study, the total syntheses of backbone-cyclized analogues of Gm (two disulfide bonds), [Cys(Acm)(2,15)]-Gm (one disulfide bond) and [Thr(2,6,11,15),(D)-Pro(9)]-Gm (no disulfide bonds) were accomplished, and the impact of cyclization on their properties was examined. The consequence of simultaneous deletion of pGlu(1) and Arg(16) -Glu-Arg(18) -NH(2) on Gm antimicrobial activity and structure was also analyzed. The results obtained showed that the synthetic route that includes peptide backbone cyclization on resin was advantageous and that a combination of 20% DMSO/NMP, EDC/HOBt, 60 °C and conventional heating appears to be particularly suitable for backbone cyclization of bioactive peptides. The biological properties of the Gm analogues clearly revealed that the N-terminal amino acid pGlu(1) and the amidated C-terminal tripeptide Arg(16) -Glu-Arg(18) -NH(2) play a major role in the interaction of Gm with the target membranes. Moreover, backbone cyclization practically did not affect the stability of the peptides in human serum; it also did not affect or enhanced hemolytic activity, but induced selectivity and, in some cases, discrete enhancements of antimicrobial activity and salt tolerance. Because of its high therapeutic index, easy synthesis and lower cost, the [Thr(2,6,11,15),(D)-Pro(9)]-Gm analogue remains the best active Gm-derived AMP developed so far; nevertheless, its elevated instability in human serum may limit its therapeutic potential.


Assuntos
Anti-Infecciosos/síntese química , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/farmacologia , Anti-Infecciosos/química , Candida albicans/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Peptídeos Cíclicos/química , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Temperatura
10.
Fish Shellfish Immunol ; 31(6): 938-43, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21888978

RESUMO

In this study, we report on the isolation and characterization of an alpha2-macroglobulin (α2M) from the plasma of the pink shrimp Farfantepenaeus paulensis, its sub-cellular localization and transcriptional changes after infection by fungi. The molecular mass of the α2M was estimated at 389 kDa by gel filtration and 197 kDa by SDS-PAGE, under reducing conditions, suggesting that α2M from F. paulensis consists of two identical sub-units, covalently linked by disulphide bonds. The N-terminal amino acid sequence of the α2M from F. paulensis was very similar to those of other penaeid shrimps, crayfish and lobster (70-90% identity) and to a less extent with that of freshwater prawn (40% identity). A monoclonal antibody raised against the Marsupenaeus japonicus α2M made it possible to demonstrate that α2M of F. paulensis is stored in the vesicles of the shrimp granular hemocytes (through immunogold assay). Quantitative real-time PCR (qPCR) analysis showed that α2M mRNA transcripts significantly increased 24 h after an experimental infection with the shrimp pathogen Fusarium solani and it returned to the basal levels at 48 h post-injection. This is the first report on a α2M characterization in an Atlantic penaeid species and its expression profile upon a fungal infection.


Assuntos
Fusarium/imunologia , Regulação da Expressão Gênica/imunologia , Penaeidae/imunologia , alfa-Macroglobulinas/imunologia , Animais , Sequência de Bases , Western Blotting , Cromatografia em Gel , Cromatografia por Troca Iônica , Primers do DNA/genética , Eletroforese em Gel de Poliacrilamida , Técnica Indireta de Fluorescência para Anticorpo , Hemócitos/metabolismo , Hemócitos/ultraestrutura , Imuno-Histoquímica , Dados de Sequência Molecular , Penaeidae/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Homologia de Sequência , Especificidade da Espécie , alfa-Macroglobulinas/genética
11.
Front Immunol ; 12: 628054, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33737931

RESUMO

Ticks are ectoparasitic arthropods that necessarily feed on the blood of their vertebrate hosts. The success of blood acquisition depends on the pharmacological properties of tick saliva, which is injected into the host during tick feeding. Saliva is also used as a vehicle by several types of pathogens to be transmitted to the host, making ticks versatile vectors of several diseases for humans and other animals. When a tick feeds on an infected host, the pathogen reaches the gut of the tick and must migrate to its salivary glands via hemolymph to be successfully transmitted to a subsequent host during the next stage of feeding. In addition, some pathogens can colonize the ovaries of the tick and be transovarially transmitted to progeny. The tick immune system, as well as the immune system of other invertebrates, is more rudimentary than the immune system of vertebrates, presenting only innate immune responses. Although simpler, the large number of tick species evidences the efficiency of their immune system. The factors of their immune system act in each tick organ that interacts with pathogens; therefore, these factors are potential targets for the development of new strategies for the control of ticks and tick-borne diseases. The objective of this review is to present the prevailing knowledge on the tick immune system and to discuss the challenges of studying tick immunity, especially regarding the gaps and interconnections. To this end, we use a comparative approach of the tick immune system with the immune system of other invertebrates, focusing on various components of humoral and cellular immunity, such as signaling pathways, antimicrobial peptides, redox metabolism, complement-like molecules and regulated cell death. In addition, the role of tick microbiota in vector competence is also discussed.


Assuntos
Imunidade Celular , Imunidade Humoral , Saliva/imunologia , Glândulas Salivares/imunologia , Doenças Transmitidas por Carrapatos/imunologia , Carrapatos/imunologia , Animais , Interações Hospedeiro-Parasita , Humanos , Saliva/metabolismo , Glândulas Salivares/metabolismo , Doenças Transmitidas por Carrapatos/metabolismo , Doenças Transmitidas por Carrapatos/transmissão , Carrapatos/metabolismo
12.
J Biol Chem ; 284(50): 34735-46, 2009 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-19828445

RESUMO

Microplusin, a Rhipicephalus (Boophilus) microplus antimicrobial peptide (AMP) is the first fully characterized member of a new family of cysteine-rich AMPs with histidine-rich regions at the N and C termini. In the tick, microplusin belongs to the arsenal of innate defense molecules active against bacteria and fungi. Here we describe the NMR solution structure of microplusin and demonstrate that the protein binds copper II and iron II. Structured as a single alpha-helical globular domain, microplusin consists of five alpha-helices: alpha1 (residues Gly-9 to Arg-21), alpha2 (residues Glu-27 to Asn-40), alpha3 (residues Arg-44 to Thr-54), alpha4 (residues Leu-57 to Tyr-64), and alpha5 (residues Asn-67 to Cys-80). The N and C termini are disordered. This structure is unlike any other AMP structures described to date. We also used NMR spectroscopy to map the copper binding region on microplusin. Finally, using the Gram-positive bacteria Micrococcus luteus as a model, we studied of mode of action of microplusin. Microplusin has a bacteriostatic effect and does not permeabilize the bacterial membrane. Because microplusin binds metals, we tested whether this was related to its antimicrobial activity. We found that the bacteriostatic effect of microplusin was fully reversed by supplementation of culture media with copper II but not iron II. We also demonstrated that microplusin affects M. luteus respiration, a copper-dependent process. Thus, we conclude that the antibacterial effect of microplusin is due to its ability to bind and sequester copper II.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Cobre/química , Estrutura Secundária de Proteína , Rhipicephalus/química , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Sítios de Ligação , Bovinos , Dicroísmo Circular , Humanos , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Consumo de Oxigênio , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
13.
BMC Genomics ; 11: 186, 2010 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-20298599

RESUMO

BACKGROUND: Bovine anaplasmosis, caused by the rickettsial tick-borne pathogen Anaplasma marginale (Rickettsiales: Anaplasmataceae), is vectored by Rhipicephalus (Boophilus)microplus in many tropical and subtropical regions of the world. A. marginale undergoes a complex developmental cycle in ticks which results in infection of salivary glands from where the pathogen is transmitted to cattle. In previous studies, we reported modification of gene expression in Dermacentor variabilis and cultured Ixodes scapularis tick cells in response to infection with A. marginale. In these studies, we extended these findings by use of a functional genomics approach to identify genes differentially expressed in R. microplus male salivary glands in response to A. marginale infection. Additionally, a R. microplus-derived cell line, BME26, was used for the first time to also study tick cell gene expression in response to A. marginale infection. RESULTS: Suppression subtractive hybridization libraries were constructed from infected and uninfected ticks and used to identify genes differentially expressed in male R. microplus salivary glands infected with A. marginale. A total of 279 ESTs were identified as candidate differentially expressed genes. Of these, five genes encoding for putative histamine-binding protein (22Hbp), von Willebrand factor (94Will), flagelliform silk protein (100Silk), Kunitz-like protease inhibitor precursor (108Kunz) and proline-rich protein BstNI subfamily 3 precursor (7BstNI3) were confirmed by real-time RT-PCR to be down-regulated in tick salivary glands infected with A. marginale. The impact of selected tick genes on A. marginale infections in tick salivary glands and BME26 cells was characterized by RNA interference. Silencing of the gene encoding for putative flagelliform silk protein (100Silk) resulted in reduced A. marginale infection in both tick salivary glands and cultured BME26 cells, while silencing of the gene encoding for subolesin (4D8) significantly reduced infection only in cultured BME26 cells. The knockdown of the gene encoding for putative metallothionein (93 Meth), significantly up-regulated in infected cultured BME26 cells, resulted in higher A. marginale infection levels in tick cells. CONCLUSIONS: Characterization of differential gene expression in salivary glands of R. microplus in response to A. marginale infection expands our understanding of the molecular mechanisms at the tick-pathogen interface. Functional studies suggested that differentially expressed genes encoding for subolesin, putative von Willebrand factor and flagelliform silk protein could play a role in A. marginale infection and multiplication in ticks. These tick genes found to be functionally relevant for tick-pathogen interactions will likely be candidates for development of vaccines designed for control of both ticks and tick-borne pathogens.


Assuntos
Anaplasma marginale/fisiologia , Perfilação da Expressão Gênica , Rhipicephalus/genética , Glândulas Salivares/metabolismo , Animais , Linhagem Celular , Etiquetas de Sequências Expressas , Biblioteca Gênica , Interações Hospedeiro-Patógeno , Masculino , Hibridização de Ácido Nucleico , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rhipicephalus/microbiologia , Glândulas Salivares/microbiologia , Análise de Sequência de DNA
14.
Adv Exp Med Biol ; 708: 137-62, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21528697

RESUMO

Ticks are blood feeding parasites transmitting a wide variety of pathogens to their vertebrate hosts. The vector competence of ticks is tightly linked with their immune system. Despite its importance, our knowledge of tick innate immunity is still inadequate and the limited number of sufficiently characterized immune molecules and cellular reactions are dispersed across numerous tick species. The phagocytosis of microbes by tick hemocytes seems to be coupled with a primitive complement-like system, which possibly involves self/nonself recognition by fibrinogen-related lectins and the action of thioester-containing proteins. Ticks do not seem to possess a pro-phenoloxidase system leading to melanization and also coagulation of tick hemolymph has not been experimentally proven. They are capable of defending themselves against microbial infection with a variety of antimicrobial peptides comprising lysozymes, defensins and molecules not found in other invertebrates. Virtually nothing is known about the signaling cascades involved in the regulation of tick antimicrobial immune responses. Midgut immunity is apparently the decisive factor of tick vector competence. The gut content is a hostile environment for ingested microbes, which is mainly due to the antimicrobial activity of hemoglobin fragments generated by the digestion of the host blood as well as other antimicrobial peptides. Reactive oxygen species possibly also play an important role in the tick-pathogen interaction. The recent release of the Ixodes scapularis genome and the feasibility of RNA interference in ticks promise imminent and substantial progress in tick innate immunity research.


Assuntos
Imunidade Inata/imunologia , Carrapatos/imunologia , Animais , Hemócitos/imunologia , Interações Hospedeiro-Patógeno/imunologia , Carrapatos/microbiologia
15.
Pathogens ; 9(9)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927666

RESUMO

Rocky Mountain spotted fever (RMSF) is a life-threatening tick-borne disease caused by Rickettsia rickettsii, which is widely distributed throughout the Americas. Over 4000 cases of RMSF are recorded annually in the United States, while only around 100 cases are reported in Brazil. Conversely, while case fatality rates in the United States oscillate around 5%, in Brazil they can surpass 70%, suggesting that differences in tick vectoring capacity, population sensitivity, and/or variability in virulence of the rickettsial strains may exist. In this study, we compared the susceptibility of C3H/HeN mice to two highly virulent strains of R. rickettsii, one from the United States (Sheila Smith) and the other from Brazil (Taiaçu). Animals inoculated with the Taiaçu strain succumbed to infection earlier and exhibited severe histological lesions in both liver and spleen sooner than mice infected with the Sheila Smith strain. These differences in survival and signs of the disease are not related to a greater proliferation of the Taiaçu strain, as there were no significant differences in the rickettsial load in mice tissues inoculated with either strain. The present study is the first step to experimentally assess differences in fatality rates of RMSF in two different regions of the American continent.

16.
Dev Comp Immunol ; 106: 103606, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31904432

RESUMO

Although the ticks Amblyomma sculptum and Amblyomma aureolatum are important vectors of Rickettsia rickettsii, causative agent of the life-threatening Rocky Mountain spotted fever, A. aureolatum is considerably more susceptible to infection than A. sculptum. As the microbiota can interfere with the colonization of arthropod midgut (MG) by pathogens, in the current study we analyzed the MG microbiota of both tick species. Our results revealed that the MG of A. aureolatum harbors a prominent microbiota, while A. sculptum does not. Remarkably, a significant reduction of the bacterial load was recorded in R. rickettsii-infected A. aureolatum. In addition, the taxonomy analysis of the MG bacterial community of A. aureolatum revealed a dominance of the genus Francisella, suggesting an endosymbiosis. This study is the first step in getting insights into the mechanisms underlying the interactions among Amblyomma species, their microbiota and R. rickettsii. Additional studies to better understand these mechanisms are required and may help the development of novel alternatives to block rickettsial transmission.


Assuntos
Amblyomma/microbiologia , Vetores Aracnídeos/microbiologia , Francisella/fisiologia , Trato Gastrointestinal/microbiologia , Microbiota/fisiologia , Rickettsia rickettsii/fisiologia , Febre Maculosa das Montanhas Rochosas/transmissão , Animais , Suscetibilidade a Doenças , Vetores de Doenças , Interações Hospedeiro-Patógeno , Humanos , Simbiose
17.
Parasit Vectors ; 13(1): 603, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33261663

RESUMO

BACKGROUND: Rickettsia rickettsii is a tick-borne obligate intracellular bacterium that causes Rocky Mountain spotted fever, a life-threatening illness. To obtain an insight into the vector-pathogen interactions, we assessed the effects of infection with R. rickettsii on the proteome cells of the tick embryonic cell line BME26. METHODS: The proteome of BME26 cells was determined by label-free high-performance liquid chromatography coupled with tandem mass spectrometry analysis. Also evaluated were the effects of infection on the activity of caspase-3, assessed by the hydrolysis of a synthetic fluorogenic substrate in enzymatic assays, and on the exposition of phosphatidyserine, evaluated by live-cell fluorescence microscopy after labeling with annexin-V. Finally, the effects of activation or inhibition of caspase-3 activity on the growth of R. rickettsii in BME26 cells was determined. RESULTS: Tick proteins of different functional classes were modulated in a time-dependent manner by R. rickettsii infection. Regarding proteins involved in apoptosis, certain negative regulators were downregulated at the initial phase of the infection (6 h) but upregulated in the middle of the exponential phase of the bacterial growth (48 h). Microorganisms are known to be able to inhibit apoptosis of the host cell to ensure their survival and proliferation. We therefore evaluated the effects of infection on classic features of apoptotic cells and observed DNA fragmentation exclusively in noninfected cells. Moreover, both caspase-3 activity and phosphatidylserine exposition were lower in infected than in noninfected cells. Importantly, while the activation of caspase-3 exerted a detrimental effect on rickettsial proliferation, its inhibition increased bacterial growth. CONCLUSIONS: Taken together, these results show that R. rickettsii modulates the proteome and exerts an inhibitory effect on apoptosis in tick cellsthat seems to be important to ensure cell colonization.


Assuntos
Apoptose , Rickettsia rickettsii/fisiologia , Carrapatos/citologia , Carrapatos/microbiologia , Animais , Caspase 3/genética , Caspase 3/metabolismo , Interações Hospedeiro-Patógeno , Carrapatos/genética , Carrapatos/metabolismo
18.
Sci Rep ; 10(1): 18296, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-33106528

RESUMO

To further obtain insights into the Rhipicephalus microplus transcriptome, we used RNA-seq to carry out a study of expression in (i) embryos; (ii) ovaries from partially and fully engorged females; (iii) salivary glands from partially engorged females; (iv) fat body from partially and fully engorged females; and (v) digestive cells from partially, and (vi) fully engorged females. We obtained > 500 million Illumina reads which were assembled de novo, producing > 190,000 contigs, identifying 18,857 coding sequences (CDS). Reads from each library were mapped back into the assembled transcriptome giving a view of gene expression in different tissues. Transcriptomic expression and pathway analysis showed that several genes related in blood digestion and host-parasite interaction were overexpressed in digestive cells compared with other tissues. Furthermore, essential genes for the cell development and embryogenesis were overexpressed in ovaries. Taken altogether, these data offer novel insights into the physiology of production and role of saliva, blood digestion, energy metabolism, and development with submission of 10,932 novel tissue/cell specific CDS to the NCBI database for this important tick species.


Assuntos
Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Rhipicephalus/fisiologia , Animais , Bovinos , Feminino , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Especificidade de Órgãos , Ovário/química , Gravidez , Rhipicephalus/genética , Saliva/química , Análise de Sequência de RNA
19.
Front Physiol ; 10: 529, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31130872

RESUMO

The salivary glands (SG) of ixodid ticks play a pivotal role in blood feeding, producing both the cement and the saliva. The cement is an adhesive substance that helps the attachment of the tick to the host skin, while the saliva contains a rich mixture of antihemostatic, anti-inflammatory, and immunomodulatory substances that allow ticks to properly acquire the blood meal. The tick saliva is also a vehicle used by several pathogens to be transmitted to the vertebrate host, including various bacterial species from the genus Rickettsia. Rickettsia rickettsii is a tick-borne obligate intracellular bacterium that causes the severe Rocky Mountain spotted fever. In Brazil, the dog yellow tick Amblyomma aureolatum is a vector of R. rickettsii. In the current study, the effects of an experimental infection with R. rickettsii on the global gene expression profile of A. aureolatum SG was determined by next-generation RNA sequencing. A total of 260 coding sequences (CDSs) were modulated by infection, among which 161 were upregulated and 99 were downregulated. Regarding CDSs in the immunity category, we highlight one sequence encoding one microplusin-like antimicrobial peptide (AMP) (Ambaur-69859). AMPs are important effectors of the arthropod immune system, which lack the adaptive response of the immune system of vertebrates. The expression of microplusin was confirmed to be significantly upregulated in the SG as well as in the midgut (MG) of infected A. aureolatum by a quantitative polymerase chain reaction preceded by reverse transcription. The knockdown of the microplusin expression by RNA interference caused a significant increase in the prevalence of infected ticks in relation to the control. In addition, a higher rickettsial load of one order of magnitude was recorded in both the MG and SG of ticks that received microplusin-specific dsRNA. No effect of microplusin knockdown was observed on the R. rickettsii transmission to rabbits. Moreover, no significant differences in tick engorgement and oviposition were recorded in ticks that received dsMicroplusin, demonstrating that microplusin knockdown has no effect on tick fitness. Further studies must be performed to determine the mechanism of action of this AMP against R. rickettsii.

20.
Biochim Biophys Acta ; 1768(1): 52-8, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17027634

RESUMO

The aim of this work was to examine the bioactivity and the conformational behavior of some gomesin (Gm) analogues in different environments that mimic the biological membrane/water interface. Thus, manual peptide synthesis was performed by the solid-phase method, antimicrobial activity was evaluated by a liquid growth inhibition assay, and conformational studies were performed making use of several spectroscopic techniques: CD, fluorescence and EPR. [TOAC(1)]-Gm; [TOAC(1), Ser(2,6,11,15)]-Gm; [Trp(7)]-Gm; [Ser(2,6,11,15), Trp(7)]-Gm; [Trp(9)]-Gm; and [Ser(2,6,11,15), Trp(9)]-Gm were synthesized and tested. The results indicated that incorporation of TOAC or Trp caused no significant reduction of antimicrobial activity; the cyclic analogues presented a beta-hairpin conformation similar to that of Gm. All analogues interacted with negatively charged SDS both above and below the detergent's critical micellar concentration (cmc). In contrast, while Gm and [TOAC(1)]-Gm required higher LPC concentrations to bind to micelles of this zwitterionic detergent, the cyclic Trp derivatives and the linear derivatives did not seem to interact with this membrane-mimetic system. These data corroborate previous results that suggest that electrostatic interactions with the lipid bilayer of microorganisms play an important role in the mechanism of action of gomesin. Moreover, the results show that hydrophobic interactions also contribute to membrane binding of this antimicrobial peptide.


Assuntos
Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Membrana Celular/efeitos dos fármacos , Dicroísmo Circular , Espectroscopia de Ressonância de Spin Eletrônica , Espectrometria de Fluorescência , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/química , Bacillus megaterium/efeitos dos fármacos , Bacillus megaterium/crescimento & desenvolvimento , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Membrana Celular/química , Óxidos N-Cíclicos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Micelas , Testes de Sensibilidade Microbiana , Conformação Proteica , Marcadores de Spin , Relação Estrutura-Atividade , Triptofano/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA