Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mediators Inflamm ; 2021: 9450843, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34354545

RESUMO

Background and Purpose. Abdominal aortic aneurysm (AAA) is a chronic inflammatory disorder and the important causes of death among men over the age of 65 years. Interleukin-12p35 (IL12p35) is an inflammatory cytokine that participates in a variety of inflammatory diseases. However, the role of IL12p35 in the formation and development of AAA is still unknown. Experimental Approach. Male apolipoprotein E-deficient (Apoe-/-) mice were generated and infused with 1.44 mg/kg angiotensin II (Ang II) per day. We found that IL12p35 expression was noticeably increased in the murine AAA aorta and isolated aortic smooth muscle cells (SMCs) after Ang II stimulation. IL12p35 silencing promoted Ang II-induced AAA formation and rupture in Apoe-/- mice. IL12p35 silencing markedly increased the expression of inflammatory cytokines, including IL-1ß, IL-6, and tumor necrosis factor-α (TNF-α), in both the serum and AAA aorta. Additionally, IL12p35 silencing exacerbated SMC apoptosis in Apoe-/- mice after Ang II infusion. IL12p35 silencing significantly increased signal transducer and activator of transcription (STAT) 4 phosphorylation levels in AAA mice, and STAT4 knockdown abolished the IL12p35-mediated proinflammatory response and SMC apoptosis. Interpretation. Silencing IL12p35 promotes AAA formation by activating the STAT4 pathway, and IL12p35 may serve as a novel and promising therapeutic target for AAA treatment.


Assuntos
Angiotensina II/metabolismo , Aneurisma da Aorta Abdominal/metabolismo , Inativação Gênica , Subunidade p35 da Interleucina-12/metabolismo , Fator de Transcrição STAT4/metabolismo , Animais , Aorta , Apoptose , Modelos Animais de Doenças , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
2.
Neural Regen Res ; 19(11): 2480-2487, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38526284

RESUMO

JOURNAL/nrgr/04.03/01300535-202419110-00028/figure1/v/2024-03-08T184507Z/r/image-tiff Calcium influx into neurons triggers neuronal death during cerebral ischemia/reperfusion injury. Various calcium channels are involved in cerebral ischemia/reperfusion injury. Cav3.2 channel is a main subtype of T-type calcium channels. T-type calcium channel blockers, such as pimozide and mibefradil, have been shown to prevent cerebral ischemia/reperfusion injury-induced brain injury. However, the role of Cav3.2 channels in cerebral ischemia/reperfusion injury remains unclear. Here, in vitro and in vivo models of cerebral ischemia/reperfusion injury were established using middle cerebral artery occlusion in mice and high glucose hypoxia/reoxygenation exposure in primary hippocampal neurons. The results showed that Cav3.2 expression was significantly upregulated in injured hippocampal tissue and primary hippocampal neurons. We further established a Cav3.2 gene-knockout mouse model of cerebral ischemia/reperfusion injury. Cav3.2 knockout markedly reduced infarct volume and brain water content, and alleviated neurological dysfunction after cerebral ischemia/reperfusion injury. Additionally, Cav3.2 knockout attenuated cerebral ischemia/reperfusion injury-induced oxidative stress, inflammatory response, and neuronal apoptosis. In the hippocampus of Cav3.2-knockout mice, calcineurin overexpression offset the beneficial effect of Cav3.2 knockout after cerebral ischemia/reperfusion injury. These findings suggest that the neuroprotective function of Cav3.2 knockout is mediated by calcineurin/nuclear factor of activated T cells 3 signaling. Findings from this study suggest that Cav3.2 could be a promising target for treatment of cerebral ischemia/reperfusion injury.

3.
Gene ; 929: 148812, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39116959

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and represents the main cause of liver cirrhosis and hepatocellular carcinoma. Cav3.2 is a T-type calcium channel that is widely present in tissues throughout the body and plays a vital role in energy and metabolic balance. However, the effects of Cav3.2 on the NFALD remain unclear. Here, we investigated the role of Cav3.2 channel in the development and progression of NAFLD. After 16 weeks on a high-fat diets (HFD), Cav3.2 knockout (Cav3.2 KO) improved hepatic steatosis, liver injury and metabolic syndrome in an NAFLD mouse model. We provided evidence that Cav3.2 KO inhibited HFD-induced hepatic oxidative stress, inflammation and hepatocyte apoptosis. In addition, Cav3.2 KO also attenuated hepatic lipid accumulation, oxidative stress, inflammation and hepatocyte apoptosis in palmitic acid/oleic acid (PAOA)-treated primary hepatocytes. These results suggest that therapeutic approaches targeting Cav3.2 provide effective approaches for treating NAFLD.


Assuntos
Apoptose , Canais de Cálcio Tipo T , Dieta Hiperlipídica , Hepatócitos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica , Estresse Oxidativo , Animais , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Canais de Cálcio Tipo T/genética , Canais de Cálcio Tipo T/metabolismo , Camundongos , Dieta Hiperlipídica/efeitos adversos , Hepatócitos/metabolismo , Hepatócitos/patologia , Masculino , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Fígado/metabolismo , Fígado/patologia , Inflamação/genética , Inflamação/metabolismo
4.
Oxid Med Cell Longev ; 2022: 5067544, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35132351

RESUMO

A recent study showed that peroxiredoxins (Prxs) play an important role in the development of pathological cardiac hypertrophy. However, the involvement of Prx5 in cardiac hypertrophy remains unclear. Therefore, this study is aimed at investigating the role and mechanisms of Prx5 in pathological cardiac hypertrophy and dysfunction. Transverse aortic constriction (TAC) surgery was performed to establish a pressure overload-induced cardiac hypertrophy model. In this study, we found that Prx5 expression was upregulated in hypertrophic hearts and cardiomyocytes. In addition, Prx5 knockdown accelerated pressure overload-induced cardiac hypertrophy and dysfunction in mice by activating oxidative stress and cardiomyocyte apoptosis. Importantly, heart deterioration caused by Prx5 knockdown was related to mitogen-activated protein kinase (MAPK) pathway activation. These findings suggest that Prx5 could be a novel target for treating cardiac hypertrophy and heart failure.


Assuntos
Cardiomegalia/metabolismo , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes/métodos , Sistema de Sinalização das MAP Quinases/genética , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Animais , Animais Recém-Nascidos , Apoptose/genética , Cardiomegalia/genética , Células Cultivadas , Insuficiência Cardíaca/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/genética , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real/métodos , Regulação para Cima/genética
5.
Biomed Res Int ; 2021: 2396008, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35005013

RESUMO

BACKGROUND: Comparing the effect of two different κ-receptor agonists, nalbuphine and oxycodone, and regular morphine in patients for prophylactic analgesia of acute pain after daytime laparoscopic cholecystectomy. METHODS: One hundred and twenty-four patients undergoing laparoscopic cholecystectomy were randomly allocated to receive nalbuphine (group N), oxycodone (group O), and morphine (group M). The three groups were all given intravenous injection (iv.) of 0.15 mg/kg injection before incision and 0.05 mg/kg injection at the end of pneumoperitoneum. The Visual Analogue Scale (VAS) scores (incision, visceral, and shoulder) and Ramsay sedation scores at 1, 2, 4, 8, 12, 16, 20, and 24 hours after surgery, the time of extubation, the incidence of postoperative adverse events, the satisfaction of pain treatment, and the duration of stay after surgery were all recorded. RESULTS: Compared with group M, the VAS scores of visceral pain at rest decreased in group N and group O at 1-8 h after surgery (P < 0.05). The VAS scores of visceral pain at movement in group N decreased longer than those in group O (P < 0.05). Compared with that of group M, the postoperative time in Ramsay sedation score of group O increased longer than that of group N (P < 0.05). Compared with group N, patients had worse sleep quality in group O, longer length of stay in group M, and lower satisfaction in both groups. CONCLUSION: Compared with morphine, prophylactic use of the κ-receptor agonists, nalbuphine and oxycodone, during laparoscopic cholecystectomy can reduce postoperative visceral pain. Furthermore, the nalbuphine group had fewer adverse reactions, better analgesia, and better satisfaction.


Assuntos
Analgésicos Opioides/uso terapêutico , Colecistectomia Laparoscópica/efeitos adversos , Dor Pós-Operatória/tratamento farmacológico , Receptores Opioides kappa/agonistas , Analgesia/métodos , Feminino , Humanos , Injeções Intravenosas/métodos , Masculino , Pessoa de Meia-Idade , Morfina/uso terapêutico , Nalbufina/uso terapêutico , Oxicodona/uso terapêutico , Manejo da Dor/métodos , Medição da Dor/métodos
6.
Med Gas Res ; 15(1): 85-92, 2025 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-39436171

RESUMO

Sevoflurane has been widely used in clinical anesthesia as an inhalation anesthetic. With the development of medicine, there have been several new applications in recent years, such as daytime surgery, labor analgesia, and combined nerve block for some surgeries. Moreover, as research progresses, it has been found that it not only has potential organ protection effects but can also be used to treat severe asthma and relieve the tracheal spasm state. In addition, local administration can effectively treat vascular ulcers. We briefly review the organ protective effect of sevoflurane, its application in dental treatment, asthma treatment, vascular ulcer treatment and some new progress in clinical application.


Assuntos
Anestésicos Inalatórios , Sevoflurano , Sevoflurano/farmacologia , Sevoflurano/administração & dosagem , Humanos , Anestésicos Inalatórios/administração & dosagem , Anestésicos Inalatórios/farmacologia , Éteres Metílicos/administração & dosagem , Éteres Metílicos/farmacologia , Asma/tratamento farmacológico , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA