Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37306629

RESUMO

BACKGROUND: The Skeletal Oncology Research Group machine-learning algorithm (SORG-MLA) was developed to predict the survival of patients with spinal metastasis. The algorithm was successfully tested in five international institutions using 1101 patients from different continents. The incorporation of 18 prognostic factors strengthens its predictive ability but limits its clinical utility because some prognostic factors might not be clinically available when a clinician wishes to make a prediction. QUESTIONS/PURPOSES: We performed this study to (1) evaluate the SORG-MLA's performance with data and (2) develop an internet-based application to impute the missing data. METHODS: A total of 2768 patients were included in this study. The data of 617 patients who were treated surgically were intentionally erased, and the data of the other 2151 patients who were treated with radiotherapy and medical treatment were used to impute the artificially missing data. Compared with those who were treated nonsurgically, patients undergoing surgery were younger (median 59 years [IQR 51 to 67 years] versus median 62 years [IQR 53 to 71 years]) and had a higher proportion of patients with at least three spinal metastatic levels (77% [474 of 617] versus 72% [1547 of 2151]), more neurologic deficit (normal American Spinal Injury Association [E] 68% [301 of 443] versus 79% [1227 of 1561]), higher BMI (23 kg/m2 [IQR 20 to 25 kg/m2] versus 22 kg/m2 [IQR 20 to 25 kg/m2]), higher platelet count (240 × 103/µL [IQR 173 to 327 × 103/µL] versus 227 × 103/µL [IQR 165 to 302 × 103/µL], higher lymphocyte count (15 × 103/µL [IQR 9 to 21× 103/µL] versus 14 × 103/µL [IQR 8 to 21 × 103/µL]), lower serum creatinine level (0.7 mg/dL [IQR 0.6 to 0.9 mg/dL] versus 0.8 mg/dL [IQR 0.6 to 1.0 mg/dL]), less previous systemic therapy (19% [115 of 617] versus 24% [526 of 2151]), fewer Charlson comorbidities other than cancer (28% [170 of 617] versus 36% [770 of 2151]), and longer median survival. The two patient groups did not differ in other regards. These findings aligned with our institutional philosophy of selecting patients for surgical intervention based on their level of favorable prognostic factors such as BMI or lymphocyte counts and lower levels of unfavorable prognostic factors such as white blood cell counts or serum creatinine level, as well as the degree of spinal instability and severity of neurologic deficits. This approach aims to identify patients with better survival outcomes and prioritize their surgical intervention accordingly. Seven factors (serum albumin and alkaline phosphatase levels, international normalized ratio, lymphocyte and neutrophil counts, and the presence of visceral or brain metastases) were considered possible missing items based on five previous validation studies and clinical experience. Artificially missing data were imputed using the missForest imputation technique, which was previously applied and successfully tested to fit the SORG-MLA in validation studies. Discrimination, calibration, overall performance, and decision curve analysis were applied to evaluate the SORG-MLA's performance. The discrimination ability was measured with an area under the receiver operating characteristic curve. It ranges from 0.5 to 1.0, with 0.5 indicating the worst discrimination and 1.0 indicating perfect discrimination. An area under the curve of 0.7 is considered clinically acceptable discrimination. Calibration refers to the agreement between the predicted outcomes and actual outcomes. An ideal calibration model will yield predicted survival rates that are congruent with the observed survival rates. The Brier score measures the squared difference between the actual outcome and predicted probability, which captures calibration and discrimination ability simultaneously. A Brier score of 0 indicates perfect prediction, whereas a Brier score of 1 indicates the poorest prediction. A decision curve analysis was performed for the 6-week, 90-day, and 1-year prediction models to evaluate their net benefit across different threshold probabilities. Using the results from our analysis, we developed an internet-based application that facilitates real-time data imputation for clinical decision-making at the point of care. This tool allows healthcare professionals to efficiently and effectively address missing data, ensuring that patient care remains optimal at all times. RESULTS: Generally, the SORG-MLA demonstrated good discriminatory ability, with areas under the curve greater than 0.7 in most cases, and good overall performance, with up to 25% improvement in Brier scores in the presence of one to three missing items. The only exceptions were albumin level and lymphocyte count, because the SORG-MLA's performance was reduced when these two items were missing, indicating that the SORG-MLA might be unreliable without these values. The model tended to underestimate the patient survival rate. As the number of missing items increased, the model's discriminatory ability was progressively impaired, and a marked underestimation of patient survival rates was observed. Specifically, when three items were missing, the number of actual survivors was up to 1.3 times greater than the number of expected survivors, while only 10% discrepancy was observed when only one item was missing. When either two or three items were omitted, the decision curves exhibited substantial overlap, indicating a lack of consistent disparities in performance. This finding suggests that the SORG-MLA consistently generates accurate predictions, regardless of the two or three items that are omitted. We developed an internet application (https://sorg-spine-mets-missing-data-imputation.azurewebsites.net/) that allows the use of SORG-MLA with up to three missing items. CONCLUSION: The SORG-MLA generally performed well in the presence of one to three missing items, except for serum albumin level and lymphocyte count (which are essential for adequate predictions, even using our modified version of the SORG-MLA). We recommend that future studies should develop prediction models that allow for their use when there are missing data, or provide a means to impute those missing data, because some data are not available at the time a clinical decision must be made. CLINICAL RELEVANCE: The results suggested the algorithm could be helpful when a radiologic evaluation owing to a lengthy waiting period cannot be performed in time, especially in situations when an early operation could be beneficial. It could help orthopaedic surgeons to decide whether to intervene palliatively or extensively, even when the surgical indication is clear.

2.
Global Spine J ; : 21925682231162817, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39069660

RESUMO

STUDY DESIGN: A systemic review and a meta-analysis. We also provided a retrospective cohort for validation in this study. OBJECTIVE: (1) Using a meta-analysis to determine the pooled discriminatory ability of The Skeletal Oncology Research Group (SORG) classical algorithm (CA) and machine learning algorithms (MLA); and (2) test the hypothesis that SORG-CA has less variability in performance than SORG-MLA in non-American validation cohorts as SORG-CA does not incorporates regional-specific variables such as body mass index as input. METHODS: After data extraction from the included studies, logit-transformation was applied for extracted AUCs for further analysis. The discriminatory abilities of both algorithms were directly compared by their logit (AUC)s. Further subgroup analysis by region (America vs non-America) was also conducted by comparing the corresponding logit (AUC). RESULTS: The pooled logit (AUC)s of 90-day SORG-CA was .82 (95% confidence interval [CI], .53-.11), 1-year SORG-CA was 1.11 (95% CI, .74-1.48), 90-day SORG-MLA was 1.36 (95% CI, 1.09-1.63), and 1-year SORG-MLA was 1.57 (95% CI, 1.17-1.98). All the algorithms performed better in United States than in Taiwan (P < .001). The performance of SORG-CA was less influenced by a non-American cohort than SORG-MLA. CONCLUSION: These observations might highlight the importance of incorporating region-specific variables into existing models to make them generalizable to racially or geographically distinct regions.

3.
Spine J ; 22(7): 1119-1130, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35202784

RESUMO

BACKGROUND CONTEXT: Preoperative prediction of prolonged postoperative opioid prescription helps identify patients for increased surveillance after surgery. The SORG machine learning model has been developed and successfully tested using 5,413 patients from the United States (US) to predict the risk of prolonged opioid prescription after surgery for lumbar disc herniation. However, external validation is an often-overlooked element in the process of incorporating prediction models in current clinical practice. This cannot be stressed enough in prediction models where medicolegal and cultural differences may play a major role. PURPOSE: The authors aimed to investigate the generalizability of the US citizens prediction model SORG to a Taiwanese patient cohort. STUDY DESIGN: Retrospective study at a large academic medical center in Taiwan. PATIENT SAMPLE: Of 1,316 patients who were 20 years or older undergoing initial operative management for lumbar disc herniation between 2010 and 2018. OUTCOME MEASURES: The primary outcome of interest was prolonged opioid prescription defined as continuing opioid prescription to at least 90 to 180 days after the first surgery for lumbar disc herniation at our institution. METHODS: Baseline characteristics were compared between the external validation cohort and the original developmental cohorts. Discrimination (area under the receiver operating characteristic curve and the area under the precision-recall curve), calibration, overall performance (Brier score), and decision curve analysis were used to assess the performance of the SORG ML algorithm in the validation cohort. This study had no funding source or conflict of interests. RESULTS: Overall, 1,316 patients were identified with sustained postoperative opioid prescription in 41 (3.1%) patients. The validation cohort differed from the development cohort on several variables including 93% of Taiwanese patients receiving NSAIDS preoperatively compared with 22% of US citizens patients, while 30% of Taiwanese patients received opioids versus 25% in the US. Despite these differences, the SORG prediction model retained good discrimination (area under the receiver operating characteristic curve of 0.76 and the area under the precision-recall curve of 0.33) and good overall performance (Brier score of 0.028 compared with null model Brier score of 0.030) while somewhat overestimating the chance of prolonged opioid use (calibration slope of 1.07 and calibration intercept of -0.87). Decision-curve analysis showed the SORG model was suitable for clinical use. CONCLUSIONS: Despite differences at baseline and a very strict opioid policy, the SORG algorithm for prolonged opioid use after surgery for lumbar disc herniation has good discriminative abilities and good overall performance in a Han Chinese patient group in Taiwan. This freely available digital application can be used to identify high-risk patients and tailor prevention policies for these patients that may mitigate the long-term adverse consequence of opioid dependence: https://sorg-apps.shinyapps.io/lumbardiscopioid/.


Assuntos
Deslocamento do Disco Intervertebral , Transtornos Relacionados ao Uso de Opioides , Algoritmos , Analgésicos Opioides/efeitos adversos , Humanos , Deslocamento do Disco Intervertebral/tratamento farmacológico , Deslocamento do Disco Intervertebral/cirurgia , Aprendizado de Máquina , Prescrições , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA