RESUMO
Sewage sludge, as a carbon-rich byproduct of wastewater treatment, holds significant untapped potential as a renewable resource. Upcycling this troublesome waste stream represents great promise in addressing global escalating energy demands through its wide practice of biochemical recovery concurrently. Here, we propose a biotechnological concept to gain value-added liquid bioproducts from sewage sludge in a self-sufficient manner by directly transforming sludge into medium-chain fatty acids (MCFAs). Our findings suggest that yeast, a cheap and readily available commercial powder, would involve ethanol-type fermentation in chain elongation to achieve abundant MCFA production from sewage sludge using electron donors (i.e., ethanol) and acceptors (i.e., short-chain fatty acids) produced in situ. The enhanced abundance and transcriptional activity of genes related to key enzymes, such as butyryl-CoA dehydrogenase and alcohol dehydrogenase, affirm the robust capacity for the self-sustained production of MCFAs. This is indicative of an effective metabolic network established between yeast and anaerobic microorganisms within this innovative sludge fermentation framework. Furthermore, life cycle assessment and techno-economic analysis evidence the sustainability and economic competitiveness of this biotechnological strategy. Overall, this work provides insights into sewage sludge upgrading independent of additional carbon input, which can be applied in existing anaerobic sludge fermentation infrastructure as well as to develop new applications in a diverse range of industries.
Assuntos
Fermentação , Esgotos , Biotecnologia/métodos , Ácidos Graxos/metabolismoRESUMO
Alkaline thermal hydrolysis of sewage sludge produces nutrients and biostimulants that enhance plant growth, attracting considerable interest in agriculture. However, the metabolic differences and regulatory mechanisms of sewage sludge-derived biostimulants (SS-BS) on the phenotypic traits, nutritional quality, and safety indicators of harvested crops remain unclear. This study investigates the impact of SS-BS on rice quality on an agricultural production scale. The research reveals that rice treated with SS-BS complies with safety standards comparable to premium rice. SS-BS significantly enhances nutrient enrichment in the endosperm, increasing protein, vitamin B1, dietary fiber, and vitamin E content by 7%, 7.2%, 23.2%, and 42.2%, respectively. Furthermore SS-BS upregulates the FG2 gene,leading to increased Nictoflorin content and activation of the gene expression of UGT73C6 and CYP75A, which catalyze O-glycosylation and promot glycosyl transfer. By inhibiting the synthesis of Trifolin, Scolymoside, and Swertiajaponin, SS-BS favors the synthesis of glycosylated derivatives of Tricin and Luteolin, which exhibit higher anti-inflammatory activity. Additionally, two novel genes, novel.2100 and novel.1300, and an uncharacterized gene, LOC9269295, are closely associated with the production of anti-inflammatory and antioxidant compounds. This study provides new evidence for SS-BS application and insights into their regulatory mechanisms affecting crop quality, contributing to the development of functional foods and sustainable agriculture.
RESUMO
Granular sludge has been recognized as an effective method for the application and industrialization of the anammox-based process due to its good biomass retention capacity and environmental tolerance. In this study, a one-stage autotrophic nitrogen removal (ANR) dual-partition system with airlift internal circulation was implemented for 320 days. A high nitrogen removal efficiency of 84.6% was obtained, while the nitrogen removal rate reached 1.28 g-N/L/d. ANR granular sludge dominated by Nitrosomonas and Candidatus Brocadia was successfully cultivated. Results showed that activity and abundance of functional flora first increased with granulation process, but eventually declined slightly when particle size exceeded the optimal range. Total anammox activity was observed to be significantly correlated with protein content (R2 = 0.9623) and nitrogen removal performance (R2 = 0.8796). Correlation network revealed that AnAOB had complex interactions with other bacteria, both synergy for nitrogen removal and competition for substrate. Changes in abundances of genes encoding the Carbohydrate Metabolism, Energy Metabolism, and Membrane Transport suggested energy production and material transfer were possibly blocked with further sludge granulation. Formation of ANR granular sludge promoted the interactions and metabolism of functional microorganisms, and the complex nitrogen metabolic pathways improved the performance stability. These results validated the feasibility of granule formation in the airlift dual-partition system and revealed the response of the ANR system to sludge granulation.
Assuntos
Nitrogênio , Esgotos , Oxirredução , Nitrogênio/análise , Desnitrificação , Reatores Biológicos/microbiologiaRESUMO
The biotransformation of food waste (FW) to bioenergy has attracted considerable research attention as a means to address the energy crisis and waste disposal problems. To this end, a promising technique is two-stage anaerobic digestion (TSAD), in which the FW is transformed to biohythane, a gaseous mixture of biomethane and biohydrogen. This review summarises the main characteristics of FW and describes the basic principle of TSAD. Moreover, the factors influencing the TSAD performance are identified, and an overview of the research status; economic aspects; and strategies such as pre-treatment, co-digestion, and regulation of microbial consortia to increase the biohythane yield from TSAD is provided. Additionally, the challenges and future considerations associated with the treatment of FW by TSAD are highlighted. This paper can provide valuable reference for the improvement and widespread implementation of TSAD-based FW treatment.
Assuntos
Reatores Biológicos , Eliminação de Resíduos , Anaerobiose , Perda e Desperdício de Alimentos , Alimentos , Metano , Esgotos , Biocombustíveis , DigestãoRESUMO
The synthesis of efficient and highly selective catalysts and rational reactor design play decisive roles in the industrial application of the electrocatalytic carbon dioxide reduction reaction (CO2 RR). In this study, a dual-metal-organic framework (MOF) copper-based catalytic electrode is designed and prepared in one step by in situ synthesis on a foamed copper substrate. The MOF-on-MOF structure can effectively inhibit the generation of H2 and CO, and further enhance the selectivity of HCOOH. Furthermore, by using cheap and durable poly(tetrafluoroethylene) (PTFE) instead of an expensive and fragile GDE, the optimized reactor design improves the stability and durability of the gas channel and the replaceability of the electrode. The structure-optimized reactor has a maximum Faradaic efficiency of 89.2% in neutral medium, and an average current density of 26.1 mA cm-2 in the flow cell, which has comparable performance to a GDE and can continue to operate stably. The use of PTFE improves the service life of the gas mass transfer channel, and the independent catalytic electrode can provide good catalytic efficiency. These results provide new insights into the reaction mechanism of structurally recombined double MOFs and PTFE-optimized CO2 RR reactor designs, providing technical support for the practical industrial application of the CO2 RR.
RESUMO
Biomass-derived carbonaceous materials with graphene/graphene-like structures (BGS) have attracted tremendous attention in the field of environmental remediation. The introduction of graphene/graphene-like structures into raw biochars can effectively improve their properties, such as electrical conductivity, surface functional groups, and catalytic activity. In 2021, the International Organization for Standardization defined graphene as a "single layer of carbon atoms with each atom bound to three neighbours in a honeycomb structure". Considering this definition, several studies have incorrectly referred to BGS (e.g., biomass-derived few-layer graphene or porous graphene-like nanosheets) as "graphene". The definitions and classifications of BGS and their applications in environmental remediation have not been assessed critically thus far. Comprehensive analysis and sufficient and robust evidence are highly desired to accurately determine the specific structures of BGS. In this perspective, we provide a systematic framework to define and classify the BGS. The state-of-the-art methods currently used to determine the structural properties of BGS are scrutinized. We then discuss the design and fabrication of BGS and how their distinctive features could improve the applicability of biomass-derived carbonaceous materials, particularly in environmental remediation. The environmental applications of these BGS are highlighted, and future research opportunities and needs are identified. The fundamental insights in this perspective provide critical guidance for the further development of BGS for a wide range of environmental applications.
Assuntos
Grafite , Grafite/química , Biomassa , Carbono , Porosidade , AlimentosRESUMO
Antibiotic resistance genes (ARGs) and microplastics (MPs) are recognized as emerging contaminants and threats to global human health. Despite both of them being significantly detected in their "hotspots", i.e., waste activated sludge (WAS), rare studies on how MPs affect ARGs and antibiotic-resistant bacteria (ARB) in anaerobic sludge digestion are available. Herein, the fate of ARGs and ARB after exposure to MPs of three dosages (10, 30, and 80 particles/g-TS), three polymer types (LDPE, PET, and PS), and three branching extents (LDPE, LLDPE, and HDPE) in anaerobic sludge digestion was investigated. Metagenomic results indicated that all variants of MPs resulted in an increase of the relative abundance of ARGs in the digester compared to the control. The abundance of ARGs demonstrated a dosage-dependent relationship within the range from 10 to 80 particles/g-TS, resulting in an increase from 4.5 to 27.9% compared to the control. Branching structure and polymer type influence ARG level in the sludge digester as well. Mechanism studies revealed that LDPE selectively enriched potential ARB and ARGs in the surface biofilm, possibly creating a favorable environment for ARB proliferation and ARG exchange. Furthermore, vertical transfer of ARGs was facilitated by LDPE through increasing bacterial cell proliferation accompanied by the enhancement of relevant functional genes. The elevated abundance of mobile genetic elements (MGEs) and ARGs-carrying plasmids also demonstrated that MGE-mediated horizontal transfer was promoted by LDPE at 80 particles/g-TS. This effect was compounded by increased oxidative stress, cell membrane permeability, and cell cohesion, collectively facilitating horizontal ARG transfer. Consequently, both vertical and horizontal transfer of ARGs could be concurrently promoted by LDPE an in anaerobic sludge digester.
Assuntos
Microplásticos , Esgotos , Humanos , Esgotos/microbiologia , Plásticos , Genes Bacterianos , Anaerobiose , Transferência Genética Horizontal , Prevalência , Antagonistas de Receptores de Angiotensina , Polietileno , Antibacterianos/farmacologia , Inibidores da Enzima Conversora de Angiotensina , Resistência Microbiana a Medicamentos/genética , Bactérias/genética , DigestãoRESUMO
Owing to its profound pollution-inducing properties and resistance to biodegradation, saline organic wastewater (SOW) has unavoidably emerged as a predominant focal point within the wastewater treatment domain. Substantial quantities of SOW are discharged by diverse industries encompassing food processing, pharmaceuticals, leather manufacturing, petrochemicals, and textiles. Within this review, the inhibitory repercussions of elevated salinity upon biological water treatment systems are subject to methodical scrutiny spanning from sludge characteristics, microbial consortia to the physiological functionality of microorganisms have been investigated. This exposition elucidates the application of both anaerobic and aerobic biological technologies for SOW treatment, which noting that conventional bioreactors can effectually treat SOW through microbial adaptation, and elaborating that cultivation of salt-tolerant bacteria and the design of advanced bioreactors represents a promising avenue for SOW treatment. Furthermore, the mechanisms underpinning microbial acclimatization to hypersaline milieus and the methodologies aimed at amplifying the efficacy of biological SOW treatment are delved into, which point out that microorganism exhibit salt tolerance via extracellular polymeric substance accumulation or by facilitating the influx of osmolarity-regulating agents into the bacterial matrix. Finally, the projections for future inquiry are proffered, encompassing the proliferation and deployment of high salt-tolerant strains, as well as the development of techniques enhancing the salt tolerance of microflora engaged in wastewater treatment.
Assuntos
Matriz Extracelular de Substâncias Poliméricas , Águas Residuárias , Esgotos , Biodegradação Ambiental , Salinidade , Reatores Biológicos/microbiologia , Eliminação de Resíduos Líquidos/métodosRESUMO
Algal blooms are regarded as a significant source of CH4 emissions. Ultrasound has been gradually employed as a fast and efficient algae removal technology in recent years. However, the changes in water environment and potential ecological effects caused by ultrasonic algae removal are not fully clear. Here, a 40-day microcosm study was performed to simulate the collapse of Microcystis aeruginosa blooms after ultrasonic treatment. The results showed that low-frequency ultrasound at 29.4 kHz for 15 min removed 33.49% of M. aeruginosa and contributed to the destruction of cell structure, but it intensified the leakage of intracellular algal organic matter and microcystins. The accelerated collapse of M. aeruginosa blooms after ultrasonication promoted the rapid formation of anaerobic and reductive methanogenesis conditions, and elevated dissolved organic carbon content. Moreover, the release of labile organics, including tyrosine, tryptophan, protein-like compositions, and aromatic proteins, was facilitated by the collapse of M. aeruginosa blooms after ultrasonic treatment, and they supported the growth of anaerobic fermentation bacteria and hydrogenotrophic Methanobacteriales. This was also demonstrated by the increase in methyl-coenzyme M reductase (mcrA) genes in sonicated algae added treatments at the end of incubation. Finally, the CH4 production in sonicated algae added treatments was 1.43-fold higher than that in non-sonicated algae added treatments. These observations suggested that ultrasound for algal bloom control potentially increased the toxicity of treated water and its greenhouse gas emissions. This study can provide new insights and guidance to evaluate environmental effects of ultrasonic algae removal.
Assuntos
Proliferação Nociva de Algas , Microcystis , Microcystis/metabolismo , Microcistinas , MetanoRESUMO
Land utilization of the biogas residue (BR) produced by anaerobic co-digestion of gentamicin mycelial residues (GMRs) and wheat straw is a promising method to achieve the deep recycling of GMRs. This study evaluated the feasibility and efficacy of application of using BR as a soil amendment by using a pot experiment. Results indicated that BR could improve the soil fertility better than commercial chicken manure fertilizer (CMF) in terms of the soil enzyme activities and nutrients supply. Random Forest (RF) model was applied to predict soil enzyme activities and identify key influencing factors. Combining the Random Forest (RF) model with the Three-dimensional Excitation-emission Matrix and Parallel Factor (3D-EEM-PARAFAC) analysis, revealing that humic-like substances provided by BR protected soil enzymes, thus improving soil fertility. Furthermore, gentamicin and antibiotic resistance genes (ARGs)/mobile genetic elements (MEGs) introduced by BR decreased greatly after cultivation, implying a low risk of antimicrobial resistance. This study suggested that reasonable application of BR could improve soil nutrients supply, soil enzyme activity and control antimicrobial resistance risk.
Assuntos
Antibacterianos , Solo , Solo/química , Biocombustíveis , Triticum , Gentamicinas , Anaerobiose , Substâncias Húmicas , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Esterco , Microbiologia do Solo , DigestãoRESUMO
ï¼Deterioration of dewaterability is one of challenges faced by anaerobic digestion (AD) of food waste (FW). The underlying mechanism of the effect of AD on digestate dewaterability remains unclear. Thus, the effect of hydrophilic functional groups of macromolecular organic on FW digestate dewaterability in different stages during AD was studied. Results showed that the dewaterability first improved at the acidification stage, and then worsened at the gasification and stabilization stages. The correlations between normalized capillary suction time (NCST), bound moisture (BM) and extracellular protein (extra-PN) were significant (R = 0.736, p < 0.05, R = 0.637, p < 0.05). Macromolecular extra-PN that enhance the bonding between organic fractions and moisture via peptide bonds. In addition, carbonyl, phenolic and amide groups increased after AD, resulting in the enhancement of the digestate hydrophilicity. Furthermore, the evolution of microbial community during AD resulting in the wrapping of BM by increased organic fractions. Therefore, higher organic fractions with hydrophilic functional groups in digestate strongly hinder moisture removal. The findings obtained deepen our understanding of hydrophilic functional groups of macromolecular organic affecting FW digestate dewaterability and provide strong supports to treatment and disposal of FW digestate.
Assuntos
Eliminação de Resíduos , Esgotos , Esgotos/química , Anaerobiose , Alimentos , Interações Hidrofóbicas e HidrofílicasRESUMO
Owing to the extremely complex compositions and origins of waste-activated sludge (WAS), the multiple physiochemical properties of WAS have impacts on its dewaterability, and there is a complex interaction relationship among the multiple physiochemical properties, which makes it difficult to identify the controlling factors on WAS dewaterability. Accordingly, there is still no unified certainty in the appropriate ranges of physiochemical properties for the optimal dewaterability of sludge from different sources, resulting in a lack of clear theoretical basis for technical selection and optimization of sludge dewatering processes. The large consumption of conditioning chemicals and low process efficiency stand for the major deficiency of existing sludge conditioning technologies. This study proposed to use a non-linear, adaptive and self-organizing artificial neural network (ANN) model to integrate the multiple physiochemical properties of WAS affecting its dewaterability, and WAS dewatering performance under certain conditioning schemes could be predicated by ANN model with the multiple physiochemical properties and conditioning operation parameters as the input arguments. Thus, the laborious filtration experiments for screening conditioning chemicals could be replaced by the input adjustment of ANN model. Rooted mean squared error (RMSE) of 6.51 and coefficient of determination (R2) of 0.73 confirmed the satisfied stability and accuracy of established ANN model. Furthermore, the predictor-exclusive method revealed that the exclusion of polar interface free energy decreased most, which reflected the importance of surface hydrophilicity reduction in sludge dewaterability improvement. All the contributions presented here were believed to provide an intelligent insight to improve the experience operation status of WAS dewatering process.
RESUMO
Previous study found that the pre-treatment of sewage sludge with nitrite improves the biogas production during the mono/two-phase anaerobic digestion (AD) using batch biochemical methane potential tests. In this study, the effects of nitrite on hydrolysis-acidification, biogas production, volatile solids destruction and microbial composition in semi-continuous two-phase AD of sewage sludge were investigated. The addition of nitrite promotes sludge organic matter solubilization (+484%) and VFAs production (+98.9%), and causes an increase in the VS degradation rate during the AD process (+8.7%). The comparison of biogas production from the acidogenic and methanogenic reactors with or without the addition of nitrite implies that the nitrite has no significant effect on the overall biogas production of two-phase sludge AD process. High-throughput sequencing analysis shows that the microbial communities of bacteria and archaea in two-phase AD reactors significantly changes after the addition of nitrite. Vulcanibacillus (bacteria) and Candidatus Methanofastidiosum (archaea) become the dominant genera in the acidogenic and methanogenic reactors with the nitrite respectively. These findings provide new insights about using nitrite to promote the organic matter degradation of sewage sludge in a semi-continuous two-phase AD system.
Assuntos
Euryarchaeota , Microbiota , Nitritos , Esgotos , Biocombustíveis , Hidrólise , ArchaeaRESUMO
Sludge is the by-product of wastewater treatment process. Multisource sludge can be defined as sludge from different sources. Based on the sludge properties of five typical cities in the Yangtze River basin, including Jiujiang, Wuhu, Lu'an, Zhenjiang and Wuhan, this study investigated and summarized the characteristic variations and distribution differences of multiple indicators and substances from municipal sludge, dredged sludge, and river and lake sediments. The results demonstrated pH of multisource sludge was relatively stable in the neutral range. Organic matter and water content among municipal sludge were high and varied considerably between different wastewater treatment plants. Dredged sludge had an obviously higher sand content and wider particle distribution, which could be considered for graded utilization depending on its size. The nutrients composition of river and lake sediments was usually stable and special, with lower nitrogen and phosphorus content but higher potassium levels. The sources of heavy metals and persistent organic pollutants in multisource sludge were correlated, generally much higher among municipal sludge than dredged sludge and river and lake sediments, which were the most important limitation for final land utilization. Despite various properties of multisource sludge, the final fate and destination have some overall similarities, which need to be supplemented and improved by standards and laws. The study provided a preliminary analysis of suitable technical routes for municipal sludge, dredged sludge, river and lake sediments based on their different characteristics respectively, which was of great significance for multisource sludge co-treatment and disposal in the future of China.
Assuntos
Rios , Esgotos , Lagos , Cidades , FósforoRESUMO
Micromolecular plant-growth biostimulants (micro-PBs) production from sewage sludge is attracting increasing interest, as it is expected to enhance the fertilizing effect of sludge for land application. This study attempted to promote effective micro-PBs production from sewage sludge through thermal hydrolysis pretreatment-anaerobic digestion (THP-AD) and explore the underpinning regulation mechanisms. Results showed that the highest effective micro-PB production in digested sludge was achieved in THP(160 °C)-AD by day 12, with 80.73 mg/kg volatile solid (VS) of phytohormones and 417.75 mg/kg VS of allelochemicals, and these effective micro-PBs all originated from aromatic amino acids (AAAs). The metabolomic and metagenomic results revealed that, as compared with THP(120 °C)-AD and AD without THP, THP(160°C)-AD uniquely upregulated AAAs biosynthesis and consequently improved AAAs metabolism toward effective micro-PBs production. Further exploration of related microbial pathways and metabolites suggested that the upregulated AAAs biosynthesis in THP(160 °C)-AD in the early stage was partially attributed to the enhanced carbohydrate release. More importantly, the results showed that the amount of quinones, which probably facilitate energy generation via acting as electron-transfer mediators, was significantly positively correlated with the abundance of AAAs biosynthesis genes (R2 = 0.93). Hence, the improved initial release and biosynthesis of quinones are critical in enhancing the AAAs biosynthesis in THP(160 °C)-AD. Moreover, the enhanced quinones supply and the consequent active AAAs transformation in THP(160 °C)-AD reinforced the humification process, highly supporting effective micro-PBs stabilization. The important roles of quinones in effective micro-PBs production and stabilization in sludge anaerobic digestion should be considered in technology development for micro-PBs recovery.
Assuntos
Aminoácidos Aromáticos , Esgotos , Anaerobiose , Hidrólise , QuinonasRESUMO
This study demonstrated that Fe3O4 simultaneously improves the total production and formation rate of medium-chain fatty acids (MCFAs) and long-chain alcohols (LCAs) from waste activated sludge (WAS) in anaerobic fermentation. Results revealed that when Fe3O4 increased from 0 to 5 g/L, the maximal MCFA and LCA production increased significantly, and the optimal fermentation time was also remarkably shortened from 24 to 9 days. Moreover, Fe3O4 also enhanced WAS degradation, and the corresponding degradation rate in the fermentation system increased from 43.86 to 72.38% with an increase in Fe3O4 from 0 to 5 g/L. Further analysis showed that Fe3O4 promoted the microbe activities of all the bioprocesses (including hydrolysis, acidogenesis, and chain elongation processes) involved in the MCFA and LCA production from WAS. Microbial community analysis indicated that Fe3O4 increased the abundances of key microbes involved in abovementioned bioprocesses correspondingly. Mechanistic investigations showed that Fe3O4 increased the conductivity of the fermented sludge, providing a better conductive environment for the anaerobic microbes. The redox cycle of Fe(II) and Fe(III) existed in the fermentation system with Fe3O4, which was likely to act as electron shuttles to conduct electron transfer (ET) from the electron donor to the acceptor, thus increasing ET efficiency. This study provides an effective method for enhancing the biotransformation of WAS into high-value products, potentially bringing economic benefits to WAS treatment.
Assuntos
Ácidos Graxos Voláteis , Esgotos , Anaerobiose , Biotransformação , Fermentação , Compostos Férricos , Concentração de Íons de HidrogênioRESUMO
Anaerobic digestion (AD) has been widely employed for converting various biowastes into renewable energy. However, AD of gentamicin mycelial residues (GMRs, a byproduct of gentamicin production) is limited by ammonia inhibition and antimicrobial resistance risk. Compared to mesophilic AD (MMAD) of GMRs, this study looked into three semicontinuous AD processes, i.e., codigestion with wheat straw, thermophilic digestion (TAcoD), and AD at shortened retention time (RT). Results showed that a stable and safe AD could be achieved under suitable operating conditions. Co-digestion could effectively mitigate the adverse effect of ammonia inhibition. The methane production increased by 35.86% in TAcoD compared to that in MMAD and 43.99% of hazardous waste was reduced in TAcoD. Concerning the antimicrobial resistance of AD system, gentamicin was degraded efficiently and the degradation process was not involved in the expression of antibiotic resistance genes (ARGs) related to modifying enzyme. Effective removal of ARGs under three operating strategies was associated with a higher reduction in bacterial abundance of potential hosts. In addition, the changes in the relevant proteins for transformation and conjugation as predicted by PICRUSt suggested that thermophilic condition and shorter RT were conducive to the reduction of the dissemination risks of ARGs.
Assuntos
Gentamicinas , Esgotos , Anaerobiose , Esgotos/microbiologia , Gentamicinas/farmacologia , Amônia , Antibacterianos/farmacologia , Metano , Reatores BiológicosRESUMO
Ethanol-type sludge fermentation has recently attracted much attention because it can enhance direct interspecies electron transfer and thus improve the anaerobic digestion of waste activated sludge (WAS). In this paper, the enhancement of short-term ethanol-type fermentation of WAS via adding Saccharomyces was investigated. The experimental results show that the maximum ethanol production of 1030.8 ± 20.6 mg/L was achieved, with the optimum fermentation conditions of a pH of 5.1, temperature of 26.0 â and time of 8.0 hr. Although the content of volatile fatty acid (VFA) increased within 10 hr, it is one order of magnitude lower than the content of ethanol, indicating that the VFA generation did not affect the efficient production of ethanol. The analyses of changes in the microbial community during the fermentation process demonstrate that the greatest Saccharomyces activity occurred in the first 8 hr and it can play an important role in ethanol production even at a very low relative abundance. Meanwhile, most typical acid-producing bacteria were inhibited, but the hydrogenotrophic methanogens (i.e., Methanobacterium) were enriched to a certain extent. Further statistical analyses reveal that the Rhodobacter, Thermomonas, Terrimonas and Saccharomyces are responsible for ethanol production during the fermentation. However, these findings not only provide a reference for the development of enhancing ethanol-type fermentation of sludge, but also are expected to provide a new way of thinking for the efficient bioenergy and resource recovery from sludge.
Assuntos
Saccharomyces , Esgotos , Anaerobiose , Reatores Biológicos , Etanol , Ácidos Graxos Voláteis , Fermentação , Concentração de Íons de Hidrogênio , MetanoRESUMO
Anaerobic digestion and incineration are widely used sewage sludge (SS) treatment and disposal approaches to recovering energy from SS, but it is difficult to select a suitable technical process from the various technologies. In this study, life-cycle assessments were adopted to compare the energy- and greenhouse gas- (GHG) emission footprints of two sludge-to-energy systems. One system uses a combination of AD with incineration (the AI system), whereas the other was simplified by direct incineration (the DI system). Comparison between three SS feedstocks (VS/TS: 57.61 -73.1 ds.%) revealed that the AI system consistently outperformed the DI system. The results of sensitivity analyses showed that the energy and GHG emission performances were mainly affected by VS content of the SS, AD conversion efficiency, and the energy consumption of sludge drying. Furthermore, the energy and GHG emission credit of the two systems increased remarkably with the increase in the VS content of the SS. For the high-organic-content sludge (VS/TS: 55%-80%), the energy and GHG emission credit of the AI system increase with the increase of AD conversion efficiency. However, for the low organic content sludge (VS/TS: 30%-55%), it has the opposite effect. In terms of energy efficiency and GHG performance, the AI system is a good choice for the treatment of high-organic-content sludge (VS/TS>55%), but DI shows superiority over AI when dealing with low organic content sludge (VS/TS<55%).
Assuntos
Gases de Efeito Estufa , Esgotos , Dessecação , Efeito Estufa , IncineraçãoRESUMO
In this study, the conditioning effect of cationic polyacrylamide (CPAM) with different charge densities on raw sludge (RS) and thermo-hydrolyzed sludge (HS) pretreated with or without ferric salt is studied through orthogonal experiments. In addition, this paper uses the principles of rheology and morphology to analyze and clarify the conditioning mechanism of RS and HS, and reveals the mechanism of thermal hydrolysis to improve the dewatering performance of sludge. Compared with the RS, the HS has smaller particle size, better filterability, stronger fluidity and more obvious thixotropy. However, due to the influence of filter pressing time, ferric salt should be added before conditioning. The orthogonal experiment shows that the optimal conditioner is CPAM with charge density of 60, and the specific resistance to filtration and capillary suction time of the adjusted thermo-hydrolyzed sludge are reduced to (1.11 ± 0.07) × 1012 m/kg and 16.1 ± 1.8 s; the particle size increased from 61.2 to 253.5 µm. The moisture content of the sludge cake is about 48%. The structural strength and thixotropy of HS are higher than those of the RS, and can be greatly improved by adding ferric salt. Morphological analysis confirms that thermal hydrolysis can lyse microbial cells in sludge, and the sludge treated with ferric salt will have more porous structure and stronger flocculation strength.