RESUMO
Retinoic acid-inducible gene I (RIG-I) is up-regulated during granulocytic differentiation of acute promyelocytic leukemia (APL) cells induced by all-trans retinoic acid (ATRA). It has been reported that RIG-I recognizes virus-specific 5'-ppp-double-stranded RNA (dsRNA) and activates the type I interferons signaling pathways in innate immunity. However, the functions of RIG-I in hematopoiesis remain unclear, especially regarding its possible interaction with endogenous RNAs and the associated pathways that could contribute to the cellular differentiation and maturation. Herein, we identified a number of RIG-I-binding endogenous RNAs in APL cells following ATRA treatment, including the tripartite motif-containing protein 25 (TRIM25) messenger RNA (mRNA). TRIM25 encodes the protein known as an E3 ligase for ubiquitin/interferon (IFN)-induced 15-kDa protein (ISG15) that is involved in RIG-I-mediated antiviral signaling. We show that RIG-I could bind TRIM25 mRNA via its helicase domain and C-terminal regulatory domain, enhancing the stability of TRIM25 transcripts. RIG-I could increase the transcriptional expression of TRIM25 by caspase recruitment domain (CARD) domain through an IFN-stimulated response element. In addition, RIG-I activated other key genes in the ISGylation pathway by activating signal transducer and activator of transcription 1 (STAT1), including the modifier ISG15 and several enzymes responsible for the conjugation of ISG15 to protein substrates. RIG-I cooperated with STAT1/2 and interferon regulatory factor 1 (IRF1) to promote the activation of the ISGylation pathway. The integrity of ISGylation in ATRA or RIG-I-induced cell differentiation was essential given that knockdown of TRIM25 or ISG15 resulted in significant inhibition of this process. Our results provide insight into the role of the RIG-I-TRIM25-ISGylation axis in myeloid differentiation.
Assuntos
Diferenciação Celular , Citocinas/metabolismo , Proteína DEAD-box 58/metabolismo , Granulócitos/fisiologia , Fatores de Transcrição/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/metabolismo , Linhagem Celular Tumoral , Citocinas/genética , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Estabilidade de RNA , RNA Mensageiro/metabolismo , Receptores Imunológicos , Fatores de Transcrição/genética , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinas/genética , Regulação para CimaRESUMO
BACKGROUND: Gastric lymphangioma is one of the highly rare benign tumors characterized by multilocular or unilocular lymphatic spaces. Herein, we report a case of lymphangioma in the gastric antrum. CASE PRESENTATION: A 77-year-old male patient who had been experiencing epigastric discomfort for a year was presented to our hospital. A gastric subepithelial lesion was diagnosed by upper endoscopy and was entirely excised via diatal subtotal gastrectomy. Endoscopic ultrasonography revealed an echoless homogenous echo pattern in the third wall layer. A lymphangioma was diagnosed by pathologic investigation of the resected specimen. The PubMed, Embase and Web of Science databases were reviewed for literature in English while using the keywords of "gastric lymphangioma" or "lymphangioma of stomach" or "gastric lymphatic cyst" or "lymphatic cyst of stomach" and the results were discussed. CONCLUSION: Gastric lymphangioma is a rarely occurring submucosal tumor that should be considered when diagnosing subepithelial lesions in the stomach.
Assuntos
Linfangioma , Linfocele , Neoplasias Gástricas , Idoso , Gastrectomia , Gastroscopia , Humanos , Linfangioma/diagnóstico por imagem , Linfangioma/cirurgia , Masculino , Neoplasias Gástricas/diagnóstico por imagem , Neoplasias Gástricas/cirurgiaRESUMO
Acute myeloid leukemia (AML) is still incurable due to its heterogeneity and complexity of tumor microenvironment. It is imperative therefore to understand the molecular pathogenesis of AML and identify leukemia-associated biomarkers to formulate effective treatment strategies. Here, we systematically analyzed the clinical characters and natural killer (NK) cells portion in seventy newly-diagnosis (ND) AML patients. We found that the proportion of NK cells in the bone marrow of ND-AML patients could predict the prognosis of patients by analyzing the types and expression abundance of NK related ligands in tumor cells. Furthermore, MCL1 inhibitor but not BCL2 inhibitor combined with NK cell-based immunotherapy could effectively improve the therapeutic efficiency via inhibiting proliferation and inducing apoptosis of AML primary cells as well as cell lines in vitro. There results provide valuable insights that could help for exploring new therapeutic strategies for leukemia treatment.
Assuntos
Medula Óssea/patologia , Células Matadoras Naturais/imunologia , Leucemia Mieloide Aguda/imunologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Receptores KIR/metabolismo , Adolescente , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Prognóstico , Análise de Sobrevida , Adulto JovemRESUMO
Myelodysplastic syndrome (MDS) is clonal disease featured by ineffective haematopoiesis and potential progression into acute myeloid leukaemia (AML). At present, the risk stratification and prognosis of MDS need to be further optimized. A prognostic model was constructed by the least absolute shrinkage and selection operator (LASSO) regression analysis for MDS patients based on the identified metabolic gene panel in training cohort, followed by external validation in an independent cohort. The patients with lower risk had better prognosis than patients with higher risk. The constructed model was verified as an independent prognostic factor for MDS patients with hazard ratios of 3.721 (1.814-7.630) and 2.047 (1.013-4.138) in the training cohort and validation cohort, respectively. The AUC of 3-year overall survival was 0.846 and 0.743 in the training cohort and validation cohort, respectively. The high-risk score was significantly related to other clinical prognostic characteristics, including higher bone marrow blast cells and lower absolute neutrophil count. Moreover, gene set enrichment analyses (GSEA) showed several significantly enriched pathways, with potential indication of the pathogenesis. In this study, we identified a novel stable metabolic panel, which might not only reveal the dysregulated metabolic microenvironment, but can be used to predict the prognosis of MDS.
Assuntos
Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Bases de Dados Genéticas , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Síndromes Mielodisplásicas/diagnóstico , Prognóstico , Modelos de Riscos Proporcionais , Curva ROC , Reprodutibilidade dos Testes , Fatores de Risco , Fatores de Tempo , Adulto JovemRESUMO
DNMT3A is frequently mutated in acute myeloid leukemia (AML). To explore the features of human AML with the hotspot DNMT3A R882H mutation, we generated Dnmt3a R878H conditional knockin mice, which developed AML with enlarged Lin-Sca1+cKit+ cell compartments. The transcriptome and DNA methylation profiling of bulk leukemic cells and the single-cell RNA sequencing of leukemic stem/progenitor cells revealed significant changes in gene expression and epigenetic regulatory patterns that cause differentiation arrest and growth advantage. Consistent with leukemic cell accumulation in G2/M phase, CDK1 was up-regulated due to mTOR activation associated with DNA hypomethylation. Overexpressed CDK1-mediated EZH2 phosphorylation resulted in an abnormal trimethylation of H3K27 profile. The mTOR inhibitor rapamycin elicited a significant therapeutic response in Dnmt3aR878H/WT mice.
Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Leucemia Mieloide Aguda/genética , Animais , Sequência de Bases , Diferenciação Celular , Metilação de DNA , DNA Metiltransferase 3A , Metilases de Modificação do DNA/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica/métodos , Técnicas de Introdução de Genes/métodos , Leucemia Mieloide Aguda/metabolismo , Camundongos , Mutação , Serina-Treonina Quinases TOR/metabolismo , TranscriptomaRESUMO
Photothermal therapy possesses great advantages for the treatment of drug-resistant tumors. Herein, Near Infrared (NIR)-triggered photothermal nanoparticles were developed through loading indocyanine green (ICG), a kind of NIR dye, into amino group-modified silica nanoparticles (SiO2-NH2 NPs). SiO2-NH2 NPs were prepared with immobilization of the amino groups into the framework of silica nanoparticles (SiO2 NPs) by employing (3-aminopropyl)-triethoxysilane (APTES). Before and after the modification of the amino group, the particle sizes of SiO2 NPs showed similar value, around 100 nm. ICG was further adsorbed into SiO2-NH2 NPs by electrostatic attraction to enable SiO2-NH2@ICG NPs as a kind of photothermal agent. The loading rate of ICG to SiO2-NH2 was greatly increased compared to unmodified SiO2, and the stability of ICG was also improved. Moreover, the SiO2-NH2@ICG NPs exhibited efficient photothermal effects due to ICG transforming laser power into local heat through the connected ICG, when NIR laser irradiation turned on for a couple of minutes. Finally, the in vitro antitumor efficacy of SiO2-NH2@ICG NPs was investigated by recording cell proliferation rate and further chronicled the apoptotic morphology evidence by a Calcein-AM/PI fluorescent staining assay, indicating the efficient photothermal targeted therapy for the HepG2 tumor cells.
Assuntos
Hipertermia Induzida/métodos , Verde de Indocianina/química , Neoplasias Hepáticas/terapia , Nanopartículas/administração & dosagem , Terapia Fototérmica/métodos , Dióxido de Silício/química , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Neoplasias Hepáticas/metabolismo , Nanopartículas/químicaRESUMO
BACKGROUND: Cytogenetic aberrations and gene mutations have long been regarded as independent prognostic markers in AML, both of which can lead to misexpression of some key genes related to hematopoiesis. It is believed that the expression level of the key genes is associated with the treatment outcome of AML. METHODS: In this study, we analyzed the clinical features and molecular aberrations of 560 newly diagnosed non-M3 AML patients, including mutational status of CEBPA, NPM1, FLT3, C-KIT, NRAS, WT1, DNMT3A, MLL-PTD and IDH1/2, as well as expression levels of MECOM, ERG, GATA2, WT1, BAALC, MEIS1 and SPI1. RESULTS: Certain gene expression levels were associated with the cytogenetic aberration of the disease, especially for MECOM, MEIS1 and BAALC. FLT3, C-KIT and NRAS mutations contained conversed expression profile regarding MEIS1, WT1, GATA2 and BAALC expression, respectively. FLT3, DNMT3A, NPM1 and biallelic CEBPA represented the mutations associated with the prognosis of AML in our group. Higher MECOM and MEIS1 gene expression levels showed a significant impact on complete remission (CR) rate, disease free survival (DFS) and overall survival (OS) both in univariate and multivariate analysis, respectively; and an additive effect could be observed. By systematically integrating gene mutational status results and gene expression profile, we could establish a more refined system to precisely subdivide AML patients into distinct prognostic groups. CONCLUSIONS: Gene expression abnormalities contained important biological and clinical informations, and could be integrated into current AML stratification system.
Assuntos
Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/genética , Mutação/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Aberrações Cromossômicas , Intervalo Livre de Doença , Feminino , Humanos , Quimioterapia de Indução , Lactente , Leucemia Mieloide Aguda/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Nucleofosmina , Prognóstico , Fatores de Risco , Resultado do Tratamento , Adulto JovemRESUMO
The gene encoding DNA methyltransferase 3A (DNMT3A) is mutated in â¼20% of acute myeloid leukemia cases, with Arg882 (R882) as the hotspot. Here, we addressed the transformation ability of the DNMT3A-Arg882His (R882H) mutant by using a retroviral transduction and bone marrow transplantation (BMT) approach and found that the mutant gene can induce aberrant proliferation of hematopoietic stem/progenitor cells. At 12 mo post-BMT, all mice developed chronic myelomonocytic leukemia with thrombocytosis. RNA microarray analysis revealed abnormal expressions of some hematopoiesis-related genes, and the DNA methylation assay identified corresponding changes in methylation patterns in gene body regions. Moreover, DNMT3A-R882H increased the CDK1 protein level and enhanced cell-cycle activity, thereby contributing to leukemogenesis.
Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/genética , Regulação da Expressão Gênica/genética , Células-Tronco Hematopoéticas/metabolismo , Leucemia Mielomonocítica Crônica/genética , Animais , Western Blotting , Ciclo Celular/genética , Ciclo Celular/fisiologia , DNA Metiltransferase 3A , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Immunoblotting , Imunofenotipagem , Imunoprecipitação , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C , Análise em Microsséries , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto/genéticaRESUMO
For alginate production in Pseudomonas aeruginosa, the intramembrane protease AlgW must be activated to cleave the periplasmic domain of anti-sigma factor MucA for release of the sequestered ECF sigma factor AlgU. Previously, we reported that three tandem point mutations in the pilA gene, resulting in a truncated type IV pilin termed PilA(108) with a C-terminal motif of phenylalanine-threonine-phenylalanine (FTF), induced mucoidy in strain PAO579. In this study, we purified PilA(108) protein and synthesized a peptide 'SGAGDITFTF' corresponding to C-terminus of PilA(108) and found they both caused the degradation of MucA by AlgW. Interestingly, AlgW could also cleave PilA(108) between alanine(62) and glycine(63) residues. Overexpression of the recombinant FTF motif-bearing MucE protein, originally a small periplasmic polypeptide with the C-terminal motif WVF, could induce mucoid conversion in the PAO1 strain. In all, our results provided a model of activation of AlgW by another protein ending with proper motifs. Our data suggest that in addition to MucA cleavage, AlgW may cleave other substrates.
Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Fímbrias/metabolismo , Regulação Bacteriana da Expressão Gênica , Peptídeo Hidrolases/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Bactérias/genética , Proteínas de Fímbrias/genética , Peptídeo Hidrolases/genética , Pseudomonas aeruginosa/genética , Proteínas Repressoras/genética , Fator sigma/metabolismoRESUMO
Pardosa pseudoannulata is one of the most common wandering spiders in agricultural fields and a potentially good bioindicator for heavy metal contamination. However, little is known about the mechanisms by which spiders respond to heavy metals at the molecular level. In the present study, high-throughput transcriptome sequencing was employed to characterize the de novo transcriptome of the spiders and to identify differentially expressed genes (DEGs) after cadmium exposure. We obtained 60,489 assembled unigenes, 18,773 of which were annotated in the public databases. A total of 2939 and 2491 DEGs were detected between the libraries of two Cd-treated groups and the control. Functional enrichment analysis revealed that metabolism processes and digestive system function were predominately enriched in response to Cd stress. At the cellular and molecular levels, significantly enriched pathways in lysosomes and phagosomes as well as replication, recombination and repair demonstrated that oxidative damage resulted from Cd exposure. Based on the selected DEGs, certain critical genes involved in defence and detoxification were analysed. These results may elucidate the molecular mechanisms underlying spiders' responses to heavy metal stress.
Assuntos
Cádmio/toxicidade , Perfilação da Expressão Gênica/métodos , Aranhas/efeitos dos fármacos , Aranhas/genética , Animais , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Inativação Metabólica/efeitos dos fármacos , Inativação Metabólica/genética , Anotação de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Transcriptoma/genéticaRESUMO
WUSCHEL-related homeobox (WOX) genes are a class of plant-specific transcription factors, regulating the development of multiple tissues. However, the genomic characterizations and expression patterns of WOX genes have not been analyzed in lotus. In this study, 15 NnWOX genes were identified based on the well-annotated reference genome of lotus. According to the phylogenetic analysis, the NnWOX genes were clustered into three clades, i.e., ancient clade, intermediate clade, and WUS clade. Except for the conserved homeobox motif, we further found specific motifs of NnWOX genes in different clades and divergence gene structures, suggesting their distinct functions. In addition, two NnWOX genes in the ancient clade have conserved expression patterns and other NnWOX genes exhibit different expression patterns in lotus tissues, suggesting a low level of functional redundancy in lotus WOX genes. Furthermore, we constructed the gene co-expression networks for each NnWOX gene. Based on weighted gene co-expression network analysis (WGCNA), ten NnWOX genes and their co-expressed genes were assigned to the modules that were significantly related to the cotyledon and seed coat. We further performed RT-qPCR experiments, validating the expression levels of ten NnWOX genes in the co-expression networks. Our study reveals comprehensive genomic features of NnWOX genes in lotus, providing a solid basis for further function studies.
RESUMO
Flexible perovskite light-emitting diodes (PeLEDs) constitute an emerging technology opening new opportunities in the fields of lighting and display for portable and wearable electronics. Poly(3,4-ethylenedioxythiophene):poly(stryrenesulfonate) (PEDOT:PSS) as one of the most promising flexible electrode materials has attracted extensive attention. However, the patterning and conductivity issues of PEDOT:PSS electrodes should be addressed primarily. Here, a photopolymerizable additive is proposed to endow the PEDOT:PSS electrodes with photopatternability. Moreover, this additive can also improve the conductivity of the PEDOT:PSS electrode from 0.16 to 627 S/cm because of the phase separation between PEDOT and PSS components and conformation transition of PEDOT chains. Eventually, highly conductive PEDOT:PSS electrodes with various patterns are applied in flexible PeLEDs, demonstrating a high luminance of 25972 cd/m2 and a current efficiency of 25.1 cd/A. This work provides a facile and effective method of patterning and improving the conductivity of PEDOT:PSS electrodes simultaneously, demonstrating the great potential of PEDOT:PSS electrodes in flexible perovskite optoelectronics.
RESUMO
Background: Cuprotosis is a recently discovered copper-dependent cell death mechanism that relies on mitochondrial respiration. However, the role of cuprotosis-related genes (CRGs) in hepatocellular carcinoma (HCC) and their prognostic significances remain unknown. Methods: Based on the recently published CRGs, the LASSO Cox regression analysis was applied to construct a CRGs risk model using the gene expression data from the International Cancer Genome Consortium as a training set, followed by validation with datasets from The Cancer Genome Atlas and the Gene Expression Omnibus (GSE14520). Functional enrichment analysis of the CRGs was performed by single-sample gene set enrichment analysis. Results: Five of the 13 previously published CRGs were identified to be associated with prognosis in HCC. Kaplan-Meier analysis suggested that patients with high-risk scores have a shorter overall survival time than patients with low-risk scores. ROC curves indicated that the average AUC was more than 0.7, even at 4 years, and at least 0.5 at 5 years. Moreover, addition of this CRG risk score can significantly improve the efficiency of predicting overall survival compared to using traditional factors alone. Functional analysis demonstrated increased presence of Treg cells in patients with high-risk scores, suggesting a suppressed immune state in these patients. Finally, we point to the possibility that novel immunotherapies such as inhibitors of PDCD1, TIGIT, IDO1, CD274, CTLA4, and LAG3 may have potential benefits in high-risk patients. Conclusion: We constructed a better prognostic model for liver cancer by using CRGs. The CRG risk score established in this study can serve as a potentially valuable tool for predicting clinical outcome of patients with HCC.
RESUMO
CsPbI3 nanocrystals (NCs) have become a research hot spot in the field of light-emitting diodes (LEDs). Whereas, the long chain ligands with weak affinity to CsPbI3 NCs have prevented their further development and commercialization. Herein, a novel multidentate short ligand tetramethylthiuram disulfide (TMTD) was employed via a ligand exchange process to enhance hole mobility and decrease trap density of the CsPbI3 NCs film. Therefore, TMTD passivated CsPbI3 NCs LED exhibited 20.65% maximum external quantum efficiency and 3861 cd/m2 maximum luminance. Furthermore, TMTD passivated CsPbI3 NCs LED exhibited good operational stability with a 128 min half-lifetime. This strategy using multidentate short ligand passivation provides an effective way to promote perovskite LED development and commercialization.
RESUMO
The SARS-CoV-2 is constantly mutating, and the new coronavirus such as Omicron has spread to many countries around the world. Anexelekto (AXL) is a transmembrane protein with biological functions such as promoting cell growth, migration, aggregation, metastasis and adhesion, and plays an important role in cancers and coronavirus disease 2019 (COVID-19). Unlike angiotensin-converting enzyme 2 (ACE2), AXL was highly expressed in respiratory system cells. In this study, we verified the AXL expression in cancer and normal tissues and found AXL expression was strongly correlated with cancer prognosis, tumor mutation burden (TMB), the microsatellite instability (MSI) in most tumor types. Immune infiltration analysis also demonstrated that there was an inextricable link between AXL expression and immune scores in cancer patients, especially in BLCA, BRCA and CESC. The NK-cells, plasmacytoid dendritic cells, myeloid dendritic cells, as one of the important components of the tumor microenvironment, were highly expressed AXL. In addition, AXL-related tumor neoantigens were identified and might provide the novel potential targets for tumor vaccines or SARS-Cov-2 vaccines research in cancer patients.
RESUMO
Tumor necrosis factor-α-inducible protein 8-like 2 (TIPE2) is encoded by TNFAIP8L2 and is a newly identified negative regulator of natural and acquired immunity that plays a critical function in maintaining immune homeostasis. Recently, CAR-NK immune cell therapy has been a focus of major research efforts as a novel cancer therapeutic strategy. TIPE2 is a potential checkpoint molecule for immune cell maturation and antitumor immunity that could be used as a novel NK cell-based immunotherapeutic approach. In this study, we explored the expression of TNFAIP8L2 across various tumor types and found that TNFAIP8L2 was highly expressed in most tumor types and correlated with prognosis. Survival analysis showed that TNFAIP8L2 expression was predictive of improved survival in cervical-squamous-cell-carcinoma (CESC), sarcoma (SARC) and skin-cutaneous-melanoma (SKCM). Conversely, TNFAIP8L2 expression predicted poorer survival in acute myeloid leukemia (LAML), lower-grade-glioma (LGG), kidney-renal-clear-cell-carcinoma (KIRC) and uveal-melanoma (UVM). Analysis of stemness features and immune cell infiltration indicated that TNFAIP8L2 was significantly associated with cancer stem cell index and increased macrophage and dendritic cell infiltration. Our data suggest that TNFAIP8L2 may be a novel immune checkpoint biomarker across different tumor types, particularly in LAML, LGG, KIRC and UVM, and may have further utility as a potential target for immunotherapy.
RESUMO
Immune checkpoint inhibitors represented by PD-1 have greatly changed the way cancer is treated. In addition to PD-1, new immune checkpoints are constantly excavated to better treat cancer. Recently, protein tyrosine phosphatase 1B (PTP1B) was identified as a new immune checkpoint and played a critical role in the treatment of tumors by inhibiting the proliferation and cytotoxicity of T cells induced by tumor antigen. To explore the targeting role of PTP1B in precision tumor therapy, we deeply analyzed the expression and prognosis of PTP1B in all tumors. Survival analysis results indicated that PTP1B was highly expressed in most tumor tissues and indicated poor prognosis in acute-myeloid-leukemia (LAML), brain-lower-grade-glioma (LGG), kidney-renal clear-cell-carcinoma (KIRC) and uveal-melanoma (UVM). The methylation status of PTP1B in these four tumors exhibited hypomethylation and mutation landscape showed that PTP1B had its specific characteristics in genomic instability and heterogeneity. The homologous recombination deficiency (HRD) and loss of heterozygosity (LOH) were positive related to PTP1B expression in liver-hepatocellular-carcinoma (LIHC) and kidney-chromophobe (KICH), while the immunescore and immune infiltration displayed a significant positive correlation with PTP1B expression in LGG and UVM. Drug sensitivity tests showed that the PTP1B inhibitor MSI-1436 had a sensitivity effect suppressing tumor cell viability and suggested it enhanced the efficacy of PD-1 inhibitors in cancers.
Assuntos
Carcinoma Hepatocelular , Glioma , Neoplasias Hepáticas , Melanoma , Humanos , Proteínas de Checkpoint Imunológico/genética , Proteínas de Checkpoint Imunológico/metabolismo , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Multiômica , Melanoma/genética , Carcinoma Hepatocelular/patologia , Glioma/genética , Neoplasias Hepáticas/patologia , Encéfalo/metabolismo , Matriz Extracelular/metabolismoRESUMO
The treatment of relapse or refractory multiple myeloma (RRMM) is still a big challenge in clinic. Recently, several clinical trials indicated that the XPO1 inhibitor, selinexor could significantly improve the remission rate in MM patients. However, the heterogeneous genetic background greatly influenced the efficiency of selinexor among MM. Here, we tried to characterized the biomarkers associated with selinexor sensitivity by analyzing gene expression data in MM patients. We found the cytogenetic background of selinexor sensitive MM patients was not limited to specific cytogenetic subtypes. In addition, by weighted gene co-expression network analysis (WGCNA), we obtained 10 key genes which showed a strong correlation with the selinexor sensitivity in MM patients. Notably, ABCC4 (MRP4) was the only gene which was both differentially expressed and proved to be clinical prognostic valuable (both for event-free survival and overall survival) in MM patients. We further validated the heterogenous expression of ABCC4 in MM cell lines and its value as a novel indicator for selinexor sensitivity. Moreover, immune infiltration analysis showed that ABCC4 expression had a significantly positive correlation with NK infiltration as well as immunotherapy target TIM-3 (HAVCR2) expression. Collectively, our findings indicated that ABCC4 might be a predictive biomarker of selinexor sensitivity in MM patients, which could be enhanced if combined with immunotherapy drugs such as TIM-3 inhibitor.
Assuntos
Resistencia a Medicamentos Antineoplásicos , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Mieloma Múltiplo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Humanos , Hidrazinas , Carioferinas/genética , Carioferinas/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Recidiva Local de Neoplasia/tratamento farmacológico , Receptores Citoplasmáticos e Nucleares/metabolismo , TriazóisRESUMO
Tigecycline is a broad-spectrum active intravenous antibiotic that is active against methicillin-resistant staphylococcus aureus. In Phase 3 and 4 clinical trials, increased all-cause mortality was observed in patients treated with tigecycline compared to patients in the control group. The reason for the increase is unclear. In this study, we found that tigecycline cause abnormal coagulation in tumor patients, especially in patients with hematological malignancies. The main manifestations were decreased fibrinogen and prolonged activated prothrombin time (APTT), thrombin time (TT), and D-dimer. In addition, through functional studies, we found that tigecycline inhibit platelet adhesion and aggregation, and the coagulation function of patients gradually recover after discontinuation. Gene sequencing results suggested that tigecycline significantly regulate the expression of genes related to platelet function pathways and increase the incidence of single nucleotide polymorphisms and the number of alternative splices in the Chinese hamster ovary (CHO) cells treated with tigecycline. An abnormal function and low numbers of platelets are common in patients with hematological malignancies. Our study can explain the mechanism of abnormal coagulation caused by tigecycline. Additionally, doctors who apply tigecycline to cure infections in tumor patients should be warned.
RESUMO
DNMT3A mutations are frequently identified in acute myeloid leukemia (AML) and indicate poor prognosis. Previously, we found that the hotspot mutation DNMT3A R882H could upregulate CDK1 and induce AML in conditional knock-in mice. However, the mechanism by which CDK1 is involved in leukemogenesis of DNMT3A mutation-related AML, and whether CDK1 could be a therapeutic target, remains unclear. In this study, using fluorescence resonance energy transfer and immunoprecipitation analysis, we discovered that increased CDK1 could compete with EZH2 to bind to the PHD-like motif of DNMT3A, which may disturb the protein interaction between EZH2 and DNMT3A. Knockdown of CDK1 in OCI-AML3 cells with DNMT3A mutation markedly inhibited proliferation and induced apoptosis. CDK1 selective inhibitor CGP74514A (CGP) and the pan-CDK inhibitor flavopiridol (FLA) arrested OCI-AML3 cells in the G2/M phase, and induced cell apoptosis. CGP significantly increased CD163-positive cells. Moreover, the combined application of CDK1 inhibitor and traditional chemotherapy drugs synergistically inhibited proliferation and induced apoptosis of OCI-AML3 cells. In conclusion, this study highlights CDK1 overexpression as a pathogenic factor and a potential therapeutic target for DNMT3A mutation-related AML.