Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Plant Cell ; 35(12): 4238-4265, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37648264

RESUMO

Variegation is a rare type of mosaicism not fully studied in plants, especially fruits. We examined red and white sections of grape (Vitis vinifera cv. 'Béquignol') variegated berries and found that accumulation of products from branches of the phenylpropanoid and isoprenoid pathways showed an opposite tendency. Light-responsive flavonol and monoterpene levels increased in anthocyanin-depleted areas in correlation with increasing MYB24 expression. Cistrome analysis suggested that MYB24 binds to the promoters of 22 terpene synthase (TPS) genes, as well as 32 photosynthesis/light-related genes, including carotenoid pathway members, the flavonol regulator HY5 HOMOLOGUE (HYH), and other radiation response genes. Indeed, TPS35, TPS09, the carotenoid isomerase gene CRTISO2, and HYH were activated in the presence of MYB24 and MYC2. We suggest that MYB24 modulates ultraviolet and high-intensity visible light stress responses that include terpene and flavonol synthesis and potentially affects carotenoids. The MYB24 regulatory network is developmentally triggered after the onset of berry ripening, while the absence of anthocyanin sunscreens accelerates its activation, likely in a dose-dependent manner due to increased radiation exposure. Anthocyanins and flavonols in variegated berry skins act as effective sunscreens but for different wavelength ranges. The expression patterns of stress marker genes in red and white sections of 'Béquignol' berries strongly suggest that MYB24 promotes light stress amelioration but only partly succeeds during late ripening.


Assuntos
Vitis , Vitis/genética , Vitis/metabolismo , Antocianinas/metabolismo , Frutas/genética , Frutas/metabolismo , Terpenos/metabolismo , Protetores Solares , Flavonóis/metabolismo , Carotenoides/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Plant Cell Physiol ; 65(2): 216-227, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37930871

RESUMO

Vitis zhejiang-adstricta (V. zhejiang-adstricta) is one of the most important and endangered wild grapes. It is a national key protected wild, rare and endangered ancient grape endemic to China and used as a candidate material for resistance breeding owing to its excellent significant disease resistance. Here, we present a high-quality chromosome-level assembly of V. zhejiang-adstricta (IB-VB-01), comprising 506.66 Mb assembled into 19 pseudo-chromosomes. The contig N50 length is 3.91 Mb with 31,196 annotated protein-coding genes. Comparative genome and evolutionary analyses illustrated that V. zhejiang-adstricta has a specific position in the evolution of East Asian Vitis and shared a common ancestor with Vitis vinifera during the divergence of the two species about 10.42 (between 9.34 and 11.12) Mya. The expanded gene families compared with those in plants were related to disease resistance, and constructed gene families were related to plant growth and primary metabolism. With the analysis of gene family expansion and contraction, the evolution of environmental adaptability and especially the NBS-LRR gene family of V. zhejiang-adstricta was elucidated based on the pathways of resistance genes (R genes), unique genes and structural variations. The near-complete and accurate diploid V. zhejiang-adstricta reference genome obtained herein serves as an important complement to wild grape genomes and will provide valuable genomic resources for investigating the genomic architecture of V. zhejiang-adstricta as well as for improving disease resistance breeding strategies in grape.


Assuntos
Vitis , Vitis/genética , Vitis/metabolismo , Resistência à Doença/genética , Genoma de Planta/genética , Genômica , China , Filogenia
3.
BMC Plant Biol ; 24(1): 189, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38486149

RESUMO

BACKGROUND: Growing evidence demonstrates that the synergistic interaction of far-red light with shorter wavelength lights could evidently improve the photosynthesis efficiency of multiple species. However, whether/how far-red light affects sink organs and consequently modulates the source‒sink relationships are largely unknown. RESULTS: Here, equal intensities of white and far-red lights were added to natural light for grape plantlets to investigate the effects of far-red light supplementation on grapevine growth and carbon assimilate allocation, as well as to reveal the underlying mechanisms, through physiological and transcriptomic analysis. The results showed that additional far-red light increased stem length and carbohydrate contents in multiple organs and decreased leaf area, specific leaf weight and dry weight of leaves in comparison with their counterparts grown under white light. Compared to white light, the maximum net photosynthetic rate of the leaves was increased by 31.72% by far-red light supplementation, indicating that far-red light indeed elevated the photosynthesis efficiency of grapes. Transcriptome analysis revealed that leaves were most responsive to far-red light, followed by sink organs, including stems and roots. Genes related to light signaling and carbon metabolites were tightly correlated with variations in the aforementioned physiological traits. In particular, VvLHCB1 is involved in light harvesting and restoring the balance of photosystem I and photosystem II excitation, and VvCOP1 and VvPIF3, which regulate light signal transduction, were upregulated under far-red conditions. In addition, the transcript abundances of the sugar transporter-encoding genes VvSWEET1 and VvSWEET3 and the carbon metabolite-encoding genes VvG6PD, VvSUS7 and VvPGAM varied in line with the change in sugar content. CONCLUSIONS: This study showed that far-red light synergistically functioning with white light has a beneficial effect on grape photosystem activity and is able to differentially affect the growth of sink organs, providing evidence for the possible addition of far-red light to the wavelength range of photosynthetically active radiation (PAR).


Assuntos
Clorofila , Luz Vermelha , Clorofila/metabolismo , Transcriptoma , Fotossíntese , Açúcares , Carbono
4.
J Exp Bot ; 75(1): 422-437, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37715996

RESUMO

Climate change presents a challenge for plants to acclimate their water relations under changing environmental conditions, and may increase the risks of hydraulic failure under stress. In this study, maize plants were acclimated to two different CO2 concentrations ([CO2]; 400 ppm and 700 ppm) while under either water stress (WS) or soil salinity (SS) treatments, and their growth and hydraulic traits were examined in detail. Both WS and SS inhibited growth and had significant impacts on hydraulic traits. In particular, the water potential at 50% loss of stem hydraulic conductance (P50) decreased by 1 MPa in both treatments at 400 ppm. When subjected to elevated [CO2], the plants under both WS and SS showed improved growth by 7-23%. Elevated [CO2] also significantly increased xylem vulnerability (measured as loss of conductivity with decreasing xylem pressure), resulting in smaller hydraulic safety margins. According to the plant desiccation model, the critical desiccation degree (time×vapor pressure deficit) that the plants could tolerate under drought was reduced by 43-64% under elevated [CO2]. In addition, sensitivity analysis showed that P50 was the most important trait in determining the critical desiccation degree. Thus, our results demonstrated that whilst elevated [CO2] benefited plant growth under WS or SS, it also interfered with hydraulic acclimation, thereby potentially placing the plants at a higher risk of hydraulic failure and increased mortality.


Assuntos
Dióxido de Carbono , Zea mays , Dióxido de Carbono/farmacologia , Solo , Salinidade , Desenvolvimento Vegetal , Xilema , Secas , Folhas de Planta
5.
Plant Physiol ; 190(1): 592-604, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-35642904

RESUMO

In ripening grape (Vitis sp.) berries, the combination of rapid sugar import, apoplastic phloem unloading, and water discharge via the xylem creates a potential risk for apoplastic sugar to be lost from the berries. We investigated the likelihood of such sugar loss and a possible sugar retrieval mechanism in the pedicels of different Vitis genotypes. Infusion of D-glucose-1-13C or L-glucose-1-13C to the stylar end of attached berries demonstrated that both sugars can be leached from the berries, but only the nontransport sugar L-glucose moved beyond the pedicels. No 13C enrichment was found in peduncles and leaves. Genes encoding 10 sugar transporters were expressed in the pedicels throughout grape ripening. Using an immunofluorescence technique, we localized the sucrose transporter SUC27 to pedicel xylem parenchyma cells. These results indicate that pedicels possess the molecular machinery for sugar retrieval from the apoplast. Plasmodesmata were observed between vascular parenchyma cells in pedicels, and movement of the symplastically mobile dye carboxyfluorescein demonstrated that the symplastic connection is physiologically functional. Taken together, the chemical, molecular, and anatomical evidence gathered here supports the idea that some apoplastic sugar can be leached from grape berries and is effectively retrieved in a two-step process in the pedicels. First, sugar transporters may actively retrieve leached sugar from the xylem. Second, retrieved sugar may move symplastically to the pedicel parenchyma for local use or storage, or to the phloem for recycling back to the berry.


Assuntos
Vitis , Carboidratos/farmacologia , Frutas/fisiologia , Glucose/farmacologia , Açúcares/farmacologia , Vitis/fisiologia
6.
Ann Bot ; 132(5): 1033-1050, 2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-37850481

RESUMO

Anthocyanin composition is responsible for the red colour of grape berries and wines, and contributes to their organoleptic quality. However, anthocyanin biosynthesis is under genetic, developmental and environmental regulation, making its targeted fine-tuning challenging. We constructed a mechanistic model to simulate the dynamics of anthocyanin composition throughout grape ripening in Vitis vinifera, employing a consensus anthocyanin biosynthesis pathway. The model was calibrated and validated using six datasets from eight cultivars and 37 growth conditions. Tuning the transformation and degradation parameters allowed us to accurately simulate the accumulation process of each individual anthocyanin under different environmental conditions. The model parameters were robust across environments for each genotype. The coefficients of determination (R2) for the simulated versus observed values for the six datasets ranged from 0.92 to 0.99, while the relative root mean square errors (RRMSEs) were between 16.8 and 42.1 %. The leave-one-out cross-validation for three datasets showed R2 values of 0.99, 0.96 and 0.91, and RRMSE values of 28.8, 32.9 and 26.4 %, respectively, suggesting a high prediction quality of the model. Model analysis showed that the anthocyanin profiles of diverse genotypes are relatively stable in response to parameter perturbations. Virtual experiments further suggested that targeted anthocyanin profiles may be reached by manipulating a minimum of three parameters, in a genotype-dependent manner. This model presents a promising methodology for characterizing the temporal progression of anthocyanin composition, while also offering a logical foundation for bioengineering endeavours focused on precisely adjusting the anthocyanin composition of grapes.


Assuntos
Vitis , Vinho , Vitis/genética , Antocianinas/análise , Antocianinas/metabolismo , Frutas/genética , Frutas/metabolismo , Vinho/análise
7.
Plant Cell Physiol ; 62(10): 1615-1629, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34279666

RESUMO

Cold tolerance is regulated by a variety of transcription factors (TFs) and their target genes. Except for the well-characterized C-repeat binding factors (CBFs)-dependent transcriptional cascade, the mechanisms of cold tolerance mediated by other transcriptional regulatory networks are still largely unknown. Here, we used the assay for transposase-accessible chromatin with sequencing (ATAC-seq) and RNA-seq to identify cold responsive TFs in Vitis amurensis, a grape species with high cold hardiness. Nine TFs, including CBF4, RAV1 and ERF104, were identified after cold treatment. Weighted gene co-expression network analysis (WGCNA) and gene ontology (GO) analysis revealed that these TFs may regulate cold response through different pathways. As a prime candidate TF, overexpression of VaRAV1 in grape cells improved its cold tolerance. The transgenic cells exhibited low electrolyte leakage and malondialdehyde content and high peroxidase activity. Moreover, the TF gene TCP8 and a gene involving in homogalacturonan biosynthesis were found to be regulated by VaRAV1, suggesting that the contribution of VaRAV1 to cold tolerance may be achieved by enhancing the stability of cell membrane and regulating the expression of target genes involved in plant cell wall composition. Our work provides novel insights into plant response to cold stress and demonstrates the utility of ATAC-seq and RNA-seq for the rapid identification of TFs in response to cold stress in grapevine. VaRAV1 may play an important role in adaption to cold stress.


Assuntos
Cromatina/metabolismo , Temperatura Baixa , Expressão Gênica , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Vitis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Vitis/metabolismo
8.
Planta ; 253(5): 114, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33934247

RESUMO

MAIN CONCLUSION: Genome-wide identification, analysis and functional characterization of an unreported VvBBX gene showed a response to light and positive correlation with anthocyanin content, but also inhibition of light-induced anthocyanin synthesis. B-box (BBX) proteins are a class of zinc (Zn) finger transcription factors or regulators characterized by the presence of one or two BBX domains and play important roles in plant growth and development. However, the BBX genes' potential functions are insufficiently characterized in grape, a globally popular berry with high economic value. Here, 25 BBX family genes including a novel member (assigned VvBBX44) were identified genome widely in grape. The expression level of these VvBBXs were analyzed in 'Cabernet Sauvignon' (V. vinifera) stem, flower, leaf, tendril, petiole, and developing berries. The expression of VvBBX44 increased in developing 'Cabernet Sauvignon' berries. Its expression was inhibited in 'Jingxiu' and 'Muscat Hamburg' berry skin without sunlight. Furthermore, overexpression of VvBBX44 decreased the expression of LONG HYPOCOTYL 5 (VvHY5) and UDP-glucose flavonoid 3-O-glucosyltransferase (VvUFGT), and reduced the anthocyanin content in grape calli. Our results suggest that VvBBX44 may play an important role in grape berry coloring by directly repressing VvHY5 expression. This study provides new insights into the potential role of VvBBXs in berry development and light response and contributes to the understanding on the regulation mechanism of VvBBX44 in anthocyanin biosynthesis.


Assuntos
Vitis , Antocianinas , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vitis/genética , Vitis/metabolismo
9.
Planta ; 253(4): 84, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33788027

RESUMO

MAIN CONCLUSION: White-fleshed grape cv. 'Gamay' and its two teinturier variants presented distinct spatial-temporal accumulation of anthocyanins, with uncoupled accumulation of sugars and anthocyanins in 'Gamay Fréaux'. In most red grape cultivars, anthocyanins accumulate exclusively in the berry skin, while 'teinturier' cultivars also accumulate anthocyanins in the pulp. Here, we investigated the teinturier cvs. 'Gamay de Bouze' and 'Gamay Fréaux' (two somatic variants of the white-fleshed cv. 'Gamay') through metabolic and transcript analysis to clarify whether these two somatic variants have the same anthocyanin accumulation pattern in the skin and pulp, and whether primary metabolites are also affected. The skin of the three cultivars and the pulp of 'Gamay de Bouze' begun to accumulate anthocyanins at the onset of berry ripening. However, the pulp of 'Gamay Fréaux' exhibited a distinct anthocyanin accumulation pattern, starting as early as fruit set with very low level of sugars. The highest level of anthocyanins was found in 'Gamay Fréaux' skin, followed by 'Gamay de Bouze' and 'Gamay'. Consistently, the transcript abundance of genes involved in anthocyanin biosynthesis were in line with the anthocyanin levels in the three cultivars. Despite no evident differences in pulp sugar content, the concentration of glucose and fructose in the skin of 'Gamay Fréaux' was only half of those in the skin of 'Gamay' and 'Gamay de Bouze' throughout all berry ripening, suggesting an uncoupled accumulation of sugars and anthocyanins in 'Gamay Fréaux'. The study provides a comprehensive view of metabolic consequences in grape somatic variants and the three almost isogenic genotypes can serve as ideal reagents to further uncover the mechanisms underlying the linkage between sugar and anthocyanin accumulation.


Assuntos
Vitis , Antocianinas , Frutose , Frutas/genética , Regulação da Expressão Gênica de Plantas , Açúcares , Vitis/genética
10.
New Phytol ; 230(4): 1489-1502, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33550584

RESUMO

The trade-off between yield and quality, a major problem for the production of fleshy fruits, involves fruit expansive growth and sugar metabolism. Here we developed an integrative model by coupling a biophysical model of fleshy fruit growth processes, including water and carbon fluxes and organ expansion, with an enzyme-based kinetic model of sugar metabolism to better understand the interactions between these two processes. The integrative model was initially tested on tomato fruit, a model system for fleshy fruit. The integrative model closely simulated the biomass and major carbon metabolites of tomato fruit developing under optimal or stress conditions. The model also performed robustly when simulating the fruit size and sugar concentrations of different tomato genotypes including wild species. The validated model was used to explore ways of uncoupling the size-sweetness trade-off in fruit. Model-based virtual experiments suggested that larger sweeter tomatoes could be obtained by simultaneously manipulating certain biophysical factors and transmembrane transports. The integrative fleshy fruit model provides a promising tool to facilitate the targeted bioengineering and breeding of tomatoes and other fruits.


Assuntos
Solanum lycopersicum , Metabolismo dos Carboidratos , Carbono , Frutas , Melhoramento Vegetal
11.
Plant Cell Environ ; 44(2): 387-398, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33099776

RESUMO

Nighttime transpiration has been previously reported as a significant source of water loss in many species; however, there is a need to determine if this trait plays a key role in the response to drought. This study aimed to determine the magnitude, regulation and relative contribution to whole plant water-use, of nighttime stomatal conductance (gnight ) and transpiration (Enight ) in grapevine (Vitis vinifera L.). Our results showed that nighttime water loss was relatively low compared to daytime transpiration, and that decreases in soil and plant water potentials were mainly explained by daytime stomatal conductance (gday ) and transpiration (Eday ). Contrary to Eday , Enight did not respond to VPD and possible effects of an innate circadian regulation were observed. Plants with higher gnight also exhibited higher daytime transpiration and carbon assimilation at midday, and total leaf area, suggesting that increased gnight may be linked with daytime behaviors that promote productivity. Modeling simulations indicated that gnight was not a significant factor in reaching critical hydraulic thresholds under scenarios of either extreme drought, or time to 20% of soil relative water content. Overall, this study suggests that gnight is not significant in exacerbating the risk of water stress and hydraulic failure in grapevine.


Assuntos
Carbono/metabolismo , Transpiração Vegetal/fisiologia , Vitis/fisiologia , Transporte Biológico , Relógios Circadianos , Desidratação , Estômatos de Plantas/fisiologia , Água/metabolismo
12.
BMC Plant Biol ; 20(1): 47, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31996144

RESUMO

BACKGROUND: Shoot branching is an important trait of plants that allows them to adapt to environment changes. Strigolactones (SLs) are newly identified plant hormones that inhibit shoot branching in plants. The SL biosynthesis genes CCD7 (carotenoid cleavage dioxygenase 7) and CCD8 have been found to regulate branching in several herbaceous plants by taking advantage of their loss-of-function mutants. However, the role for CCD7 and CCD8 in shoot branching control in grapevine is still unknown due to the lack of corresponding mutants. RESULTS: Here we employed the CRISPR/Cas9 system to edit the VvCCD7 and VvCCD8 genes in the grape hybrid 41B. The 41B embryogenic cells can easily be transformed and used for regeneration of the corresponding transformed plants. Sequencing analysis revealed that gene editing has been used successfully to target both VvCCD genes in 41B embryogenic cells. After regeneration, six 41B plantlets were identified as transgenic plants carrying the CCD8-sgRNA expression cassette. Among these, four plants showed mutation in the target region and were selected as ccd8 mutants. These ccd8 mutants showed increased shoot branching compared to the corresponding wild-type plants. In addition, no off-target mutation was detected in the tested mutants at predicted off-target sites. CONCLUSIONS: Our results underline the key role of VvCCD8 in the control of grapevine shoot branching.


Assuntos
Proteínas de Arabidopsis/genética , Dioxigenases/genética , Brotos de Planta/genética , Vitis/genética , Sistemas CRISPR-Cas , Edição de Genes , Técnicas de Inativação de Genes , Genes de Plantas , Brotos de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas
13.
J Exp Bot ; 71(14): 4333-4344, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32279077

RESUMO

Adapting agriculture to climate change is driving the need for the selection and breeding of drought-tolerant crops. The aim of this study was to identify key drought tolerance traits and determine the sequence of their water potential thresholds across three grapevine cultivars with contrasting water use behaviors, Grenache, Syrah, and Semillon. We quantified differences in water use between cultivars and combined this with the determination of other leaf-level traits (e.g. leaf turgor loss point, π TLP), leaf vulnerability to embolism (P50), and the hydraulic safety margin (HSM P50). Semillon exhibited the highest maximum transpiration (Emax), and lowest sensitivity of canopy stomatal conductance (Gc) to vapor pressure deficit (VPD), followed by Syrah and Grenache. Increasing Emax was correlated with more negative water potential at which stomata close (Pgs90), π TLP, and P50, suggesting that increasing water use is associated with hydraulic traits allowing gas exchange under more negative water potentials. Nevertheless, all the cultivars closed their stomata prior to leaf embolism formation. Modeling simulations demonstrated that despite a narrower HSM, Grenache takes longer to reach thresholds of hydraulic failure due to its conservative water use. This study demonstrates that the relationships between leaf hydraulic traits are complex and interactive, stressing the importance of integrating multiple traits in characterizing drought tolerance.


Assuntos
Secas , Melhoramento Vegetal , Mudança Climática , Folhas de Planta , Estômatos de Plantas , Transpiração Vegetal , Água
14.
J Exp Bot ; 71(19): 5823-5836, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32592486

RESUMO

Fleshy fruits are very varied, whether in terms of their composition, physiology, or rate and duration of growth. To understand the mechanisms that link metabolism to phenotypes, which would help the targeting of breeding strategies, we compared eight fleshy fruit species during development and ripening. Three herbaceous (eggplant, pepper, and cucumber), three tree (apple, peach, and clementine) and two vine (kiwifruit and grape) species were selected for their diversity. Fruit fresh weight and biomass composition, including the major soluble and insoluble components, were determined throughout fruit development and ripening. Best-fitting models of fruit weight were used to estimate relative growth rate (RGR), which was significantly correlated with several biomass components, especially protein content (R=84), stearate (R=0.72), palmitate (R=0.72), and lignocerate (R=0.68). The strong link between biomass composition and RGR was further evidenced by generalized linear models that predicted RGR with R-values exceeding 0.9. Comparison of the fruit also showed that climacteric fruit (apple, peach, kiwifruit) contained more non-cellulosic cell-wall glucose and fucose, and more starch, than non-climacteric fruit. The rate of starch net accumulation was also higher in climacteric fruit. These results suggest that the way biomass is constructed has a major influence on performance, especially growth rate.


Assuntos
Actinidia , Climatério , Biomassa , Etilenos , Frutas , Melhoramento Vegetal
15.
Ann Bot ; 126(3): 455-470, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32333754

RESUMO

BACKGROUND AND AIMS: Sugar concentration is a key determinant of fruit quality. Soluble sugars and starch concentrations in fruits vary greatly from one species to another. The aim of this study was to investigate similarities and differences in sugar accumulation strategies across ten contrasting fruit species using a modelling approach. METHODS: We developed a coarse-grained model of primary metabolism based on the description of the main metabolic and hydraulic processes (synthesis of compounds other than sugar and starch, synthesis and hydrolysis of starch, and water dilution) involved in the accumulation of soluble sugars during fruit development. KEY RESULTS: Statistical analyses based on metabolic rates separated the species into six groups according to the rate of synthesis of compounds other than sugar and starch. Herbaceous species (cucumber, tomato, eggplant, pepper and strawberry) were characterized by a higher synthesis rate than woody species (apple, nectarine, clementine, grape and kiwifruit). Inspection of the dynamics of the processes involved in sugar accumulation revealed that net sugar importation, metabolism and dilution processes were remarkably synchronous in most herbaceous plants, whereas in kiwifruit, apple and nectarine, processes related to starch metabolism were temporally separated from other processes. Strawberry, clementine and grape showed a distinct dynamic compared with all other species. CONCLUSIONS: Overall, these results provide fresh insights into species-specific regulatory strategies and into the role of starch metabolism in the accumulation of soluble sugars in fleshy fruits. In particular, inter-specific differences in development period shape the co-ordination of metabolic processes and affect priorities for carbon allocation across species. The six metabolic groups identified by our analysis do not show a clear separation into climacteric and non-climacteric species, possibly suggesting that the metabolic processes related to sugar concentration are not greatly affected by ethylene-associated events.


Assuntos
Actinidia , Solanum lycopersicum , Metabolismo dos Carboidratos , Frutas , Açúcares
16.
J Exp Bot ; 70(2): 715-729, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30445464

RESUMO

Resveratrol (Res) is a stilbenoid, a group of plant phenolic metabolites derived from stilbene that possess activities against pests, pathogens, and abiotic stresses. Only a few species, including grapevine (Vitis), synthesize and accumulate Res. Although stilbene synthases (STSs) have been isolated and characterized in several species, the gene regulatory mechanisms underlying stilbene biosynthesis are still largely unknown. Here, we characterize a grapevine WRKY transcription factor, VvWRKY8, that regulates the Res biosynthetic pathway. Transient and stable overexpression of VvWRKY8 in grapevine results in decreased expression of VvSTS15/21 and VvMYB14, as well as in a reduction of Res accumulation. VvWRKY8 does not bind to or activate the promoters of VvMYB14 and VvSTS15/21; however, it physically interacts with VvMYB14 proteins through their N-terminal domains to prevent them from binding to the VvSTS15/21 promoter. Application of exogenous Res results in the stimulation of VvWRKY8 expression and in a decrease of VvMYB14 and VvSTS15/21 expression in grapevine suspension cells, and in the activation of the VvWRKY8 promoter in tobacco leaves. These results demonstrate that VvWRKY8 represses VvSTS15/21 expression and Res biosynthesis through interaction with VvMYB14. In this context, the VvMYB14-VvSTS15/21-Res-VvWRKY8 regulatory loop may be an important mechanism for the fine-tuning of Res biosynthesis in grapevine.


Assuntos
Aciltransferases/metabolismo , Resveratrol/metabolismo , Fatores de Transcrição/metabolismo , Vitis/metabolismo , Aciltransferases/genética , Sequência de Aminoácidos , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Análise de Sequência de DNA , Vitis/genética , Vitis/efeitos da radiação
17.
J Exp Bot ; 70(9): 2505-2521, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-30357362

RESUMO

The growth of fleshy fruits is still poorly understood as a result of the complex integration of water and solute fluxes, cell structural properties, and the regulation of whole plant source-sink relationships. To unravel the contribution of these processes to berry growth, a biophysical grape (Vitis vinifera L.) berry growth module was developed and integrated with a whole-plant functional-structural model, and was calibrated on two varieties, Cabernet Sauvignon and Sangiovese. The model captured well the variations in growth and sugar accumulation caused by environmental conditions, changes in leaf-to-fruit ratio, plant water status, and varietal differences, with obvious future application in predicting yield and maturity under a variety of production contexts and regional climates. Our analyses illustrated that grapevines strive to maintain proper ripening by partially compensating for a reduced source-sink ratio, and that under drought an enhanced berry sucrose uptake capacity can reverse berry shrinkage. Sensitivity analysis highlighted the importance of phloem hydraulic conductance, sugar uptake, and surface transpiration on growth, while suggesting that cell wall extensibility and the turgor threshold for cell expansion had minor effects. This study demonstrates that this integrated model is a useful tool in understanding the integration and relative importance of different processes in driving fleshy fruit growth.


Assuntos
Carbono/metabolismo , Vitis/metabolismo , Água/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Modelos Biológicos , Pressão Osmótica/fisiologia , Floema/crescimento & desenvolvimento , Floema/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Vitis/crescimento & desenvolvimento
18.
Planta ; 248(3): 559-568, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30022278

RESUMO

MAIN CONCLUSION: The elucidation of the molecular mechanisms of starch synthesis and mobilization in perennial woody tissues is of the utmost scientific and agricultural importance. Starch is the main carbohydrate reserve in plants and is fundamental in human nutrition and several industrial processes. In leaves, starch accumulated during the day is degraded throughout the night and the resulting sugars, glucose and maltose, are exported to the cytosol by the specialized transmembrane translocators pGT and MEX, respectively. Nevertheless, the degradation of the starch granule is a complex process not completely elucidated. While the mechanisms of starch mobilization during germination in the dead endosperm of cereal seeds are well described, the molecular and biochemical mechanisms involved in starch storage in the heterotrophic tissues of woody plants and its utilization in spring and winter are still puzzling. It is known that some biochemical steps of starch synthesis are conserved in heterotrophic tissues and in the leaves, but some aspects are particular to sink organs. From an agronomic standpoint, the knowledge on starch storage and mobilization in woody tissues is pivotal to understand (and to optimize) some common practices in the field that modify source-sink relationships, such as pruning and defoliation. Soluble sugars resulting from starch are also pivotal to cold adaptation, and in several fruits, such as banana and kiwifruit, starch may provide soluble sugars during ripening. In this review, we explore the recent advances on the molecular mechanisms and regulations involved in starch synthesis and mobilization, with a focus on perennial woody tissues.


Assuntos
Amido/metabolismo , Madeira/metabolismo , Redes e Vias Metabólicas , Folhas de Planta/metabolismo , Estações do Ano , Sementes/metabolismo
19.
20.
Ann Bot ; 121(5): 833-848, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29293870

RESUMO

Background and Aims: Predicting both plant water status and leaf gas exchange under various environmental conditions is essential for anticipating the effects of climate change on plant growth and productivity. This study developed a functional-structural grapevine model which combines a mechanistic understanding of stomatal function and photosynthesis at the leaf level (i.e. extended Farqhuhar-von Caemmerer-Berry model) and the dynamics of water transport from soil to individual leaves (i.e. Tardieu-Davies model). Methods: The model included novel features that account for the effects of xylem embolism (fPLC) on leaf hydraulic conductance and residual stomatal conductance (g0), variable root and leaf hydraulic conductance, and the microclimate of individual organs. The model was calibrated with detailed datasets of leaf photosynthesis, leaf water potential, xylem sap abscisic acid (ABA) concentration and hourly whole-plant transpiration observed within a soil drying period, and validated with independent datasets of whole-plant transpiration under both well-watered and water-stressed conditions. Key Results: The model well captured the effects of radiation, temperature, CO2 and vapour pressure deficit on leaf photosynthesis, transpiration, stomatal conductance and leaf water potential, and correctly reproduced the diurnal pattern and decline of water flux within the soil drying period. In silico analyses revealed that decreases in g0 with increasing fPLC were essential to avoid unrealistic drops in leaf water potential under severe water stress. Additionally, by varying the hydraulic conductance along the pathway (e.g. root and leaves) and changing the sensitivity of stomatal conductance to ABA and leaf water potential, the model can produce different water use behaviours (i.e. iso- and anisohydric). Conclusions: The robust performance of this model allows for modelling climate effects from individual plants to fields, and for modelling plants with complex, non-homogenous canopies. In addition, the model provides a basis for future modelling efforts aimed at describing the physiology and growth of individual organs in relation to water status.


Assuntos
Modelos Biológicos , Fotossíntese , Transpiração Vegetal , Vitis/fisiologia , Água/metabolismo , Ácido Abscísico/análise , Transporte Biológico , Mudança Climática , Desidratação , Reguladores de Crescimento de Plantas/análise , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/fisiologia , Estômatos de Plantas/anatomia & histologia , Estômatos de Plantas/fisiologia , Solo/química , Temperatura , Pressão de Vapor , Vitis/anatomia & histologia , Xilema/anatomia & histologia , Xilema/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA