Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Mol Cell Neurosci ; 125: 103839, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36907531

RESUMO

Growing evidence indicates that astrocytes are tightly connected to Alzheimer's disease (AD) pathogenesis. However, the way in which astrocytes participate in AD initiation and progression remains to be clarified. Our previous data show that astrocytes engulf large amounts of aggregated amyloid-beta (Aß) but are unable to successfully degrade the material. In this study, we aimed to evaluate how intracellular Aß-accumulation affects the astrocytes over time. For this purpose, human induced pluripotent cell (hiPSC)-derived astrocytes were exposed to sonicated Aß-fibrils and then cultured further for one week or ten weeks in Aß-free medium. Cells from both time points were analyzed for lysosomal proteins and astrocyte reactivity markers and the media were screened for inflammatory cytokines. In addition, the overall health of cytoplasmic organelles was investigated by immunocytochemistry and electron microscopy. Our data demonstrate that long-term astrocytes retained frequent Aß-inclusions that were enclosed within LAMP1-positive organelles and sustained markers associated with reactivity. Furthermore, Aß-accumulation resulted in endoplasmic reticulum and mitochondrial swelling, increased secretion of the cytokine CCL2/MCP-1 and formation of pathological lipid structures. Taken together, our results provide valuable information of how intracellular Aß-deposits affect astrocytes, and thereby contribute to the understanding of the role of astrocytes in AD progression.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Humanos , Astrócitos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Citocinas/metabolismo , Células Cultivadas
2.
J Neuroinflammation ; 20(1): 43, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36803838

RESUMO

BACKGROUND: Astrocytes play a central role in maintaining brain energy metabolism, but are also tightly connected to the pathogenesis of Alzheimer's disease (AD). Our previous studies demonstrate that inflammatory astrocytes accumulate large amounts of aggregated amyloid-beta (Aß). However, in which way these Aß deposits influence their energy production remain unclear. METHODS: The aim of the present study was to investigate how Aß pathology in astrocytes affects their mitochondria functionality and overall energy metabolism. For this purpose, human induced pluripotent cell (hiPSC)-derived astrocytes were exposed to sonicated Aß42 fibrils for 7 days and analyzed over time using different experimental approaches. RESULTS: Our results show that to maintain stable energy production, the astrocytes initially increased their mitochondrial fusion, but eventually the Aß-mediated stress led to abnormal mitochondrial swelling and excessive fission. Moreover, we detected increased levels of phosphorylated DRP-1 in the Aß-exposed astrocytes, which co-localized with lipid droplets. Analysis of ATP levels, when blocking certain stages of the energy pathways, indicated a metabolic shift to peroxisomal-based fatty acid ß-oxidation and glycolysis. CONCLUSIONS: Taken together, our data conclude that Aß pathology profoundly affects human astrocytes and changes their entire energy metabolism, which could result in disturbed brain homeostasis and aggravated disease progression.


Assuntos
Doença de Alzheimer , Astrócitos , Humanos , Astrócitos/metabolismo , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/patologia , Metabolismo Energético , Mitocôndrias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA