Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Invest New Drugs ; 38(3): 700-713, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31267379

RESUMO

The bromodomain and extra-terminal domain (BET) family of proteins, especially bromodomain-containing protein 4 (BRD4), has emerged as exciting anti-tumor targets due to their important roles in epigenetic regulation. Therefore, the discovery of BET inhibitors with promising anti-tumor efficacy will provide a novel approach to epigenetic anticancer therapy. Recently, we discovered the new BET inhibitor compound 171, which is derived from a polo-like kinase 1 (PLK1)-BRD4 dual inhibitor based on our previous research. Compound 171 was found to maintain BET inhibition ability without PLK1 inhibition, and there was no selectivity among BET family members. The in vitro and in vivo results both indicated that the overall anti-tumor activity of compound 171 was improved compared with the (+)-JQ-1 or OTX-015 BET inhibitors. Furthermore, we found that compound 171 could regulate the expression of cell cycle-regulating proteins including c-Myc and p21 and induce cell cycle arrest in the G0/G1 phase. However, compound 171 only has a quite limited effect on apoptosis, in considering that apoptosis was only observed at doses greater than 50 µM. To determine the mechanisms underlying cell death, proliferation activity assay was conducted. The results showed that compound 171 induced clear anti-proliferative effects at doses that no obvious apoptosis was induced, which indicated that the cell cycle arresting effect contributed mostly to its anti-tumor activity. The result of this study revealed the anti-tumor mechanism of compound 171, and laid a foundation for the combination therapy in clinical practice, if compound 171 or its series compounds become drug candidates in the future.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteínas/antagonistas & inibidores , Células A549 , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Epigênese Genética/efeitos dos fármacos , Fase G1/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HT29 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células PC-3 , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Med Chem ; 62(18): 8642-8663, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31490070

RESUMO

BRD4 has recently emerged as a promising drug target. Therefore, identifying novel inhibitors with distinct properties could enrich their use in anticancer treatment. Guided by the cocrystal structure of hit compound 4 harboring a five-membered-ring linker motif, we quickly identified lead compound 7, which exhibited good antitumor effects in an MM.1S xenograft model by oral administration. Encouraged by its high potency and interesting scaffold, we performed further lead optimization to generate a novel potent series of bromodomain and extra-terminal (BET) inhibitors with a (1,2,4-triazol-5-yl)-3,4-dihydroquinoxalin-2(1H)-one structure. Among them, compound 19 was found to have the best balance of activity, stability, and antitumor efficacy. After confirming its low brain penetration, we conducted comprehensive preclinical studies, including a multiple-species pharmacokinetics profile, extensive cellular mechanism studies, hERG assay, and in vivo antitumor growth effect testing, and we found that compound 19 is a potential BET protein drug candidate for the treatment of cancer.


Assuntos
Desenho de Fármacos , Peptídeos/química , Proteínas/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Cristalografia por Raios X , Descoberta de Drogas , Humanos , Concentração Inibidora 50 , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Camundongos Nus , Camundongos SCID , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Transplante de Neoplasias , Neoplasias/tratamento farmacológico , Proteínas Nucleares/antagonistas & inibidores , Domínios Proteicos , Fatores de Transcrição/antagonistas & inibidores
3.
Asian J Pharm Sci ; 13(4): 326-335, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32104406

RESUMO

Self-nanoemulsifying systems (SNEs) have excellent ability to improve the solubility of poorly water-soluble drugs (PWSD). However, SNEs are likely to be degraded in gastrointestinal (GIT) when their surface is recognized by lipase/co-lipase enzyme complex, resulting in rapid release and precipitation of encapsulated drugs. The precipitates are then captured and removed by intestinal mucus, reducing the delivery efficacy of SNEs. Herein, the amphiphilic polymer Pluronic® F127 was incorporated into long and short-chain triglycerides (LCT, SCT) based SNEs to diminish the recognition and therefore minimized their degradation by enzymes and clearance by mucus. The SNEs were characterized in terms of particle size, zeta potential and stability. Ex vivo multiple particles tracking studies were performed by adding particle solution into fresh rat mucus. Cellular uptake of SNEs were conducted by using E12 cells, the absorption and distribution in small intestine were also studied after oral administration in male Sprague-Dawley (SD) rats. The in vitro digestion rate of SNEs were found to be in following order SCT-SNE > SCT-F127-SNE > LCT-SNE > LCT-F127-SNE. Moreover, the LCT-F127-SNE was found to be most effective in enhancing cellular uptake, resulting in 3.5-fold, 2.1-fold and 1.7-fold higher than that of SCT-SNE, LCT-SNE and SCT-F127-SNE, respectively. After incubating the SNE with E12 cells, the LCT-F127-SNE exhibited the highest amount regarding both mucus penetration and cellular uptake, with an uptake amount number (via bicinchoninic acid (BCA) analysis) of 3.5-fold, 2.1-fold and 1.7-fold higher than that of SCT-SNE, LCT-SNE and SCT-F127-SNE, respectively. The in vivo results revealed that orally administered LCT-F127-SNE could significantly increase the bioavailability of Cyclosporine A (CsA), which was approximately 2.43-fold, 1.33-fold and 1.80-fold higher than that of SCT-SNE, SCT-F127-SNE and LCT-SNE, respectively. We address in this work that F127-modified SNEs have potentials to improve oral drug absorption by significantly reducing gastrointestinal enzymatic degradation and simultaneously enhancing mucus penetration.

4.
Eur J Med Chem ; 150: 156-175, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29525435

RESUMO

Recently, several kinase inhibitors were found to also inhibit bromodomains, providing a new strategy for the discovery of bromodomain inhibitors. Along this line, starting from PLK1-BRD4 dual inhibitor BI-2536, we discovered a new series of dihydroquinoxalin-2(1H)-one with aniline and indoline WPF binders as selective BRD4 inhibitors. They showed better BRD4-BD1 potency and negligible PLK1 kinase activity comparing with BI-2536. Additionally, dihydroquinoxalin-2(1H)-ones containing indoline group showed profound activities in molecular and cellular based assays. Throughout the study, compounds 9, 28 and 37 showed significant inhibitory activity for c-Myc or PD-L1 protein expression and mRNA transcription both at concentration of 0.2 and 1 µM. Compound 9 was found possessing the best balance of binding affinity, in vitro metabolic stability and in vivo pharmacokinetic properties. Therefore, it was selected for in vivo pharmacological study. By using MM.1S cell derived xenograft model, we confirmed compound 9 showed comparable in vivo tumor inhibition to phase II investigation drug I-BET762, which, together with the novel WPF binder, further indicated the utility of this series of BRD4 inhibitors.


Assuntos
Compostos de Anilina/farmacologia , Indóis/farmacologia , Proteínas Nucleares/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Compostos de Anilina/química , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Proteínas de Ciclo Celular , Relação Dose-Resposta a Droga , Humanos , Indóis/química , Estrutura Molecular , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Relação Estrutura-Atividade , Fatores de Transcrição/metabolismo
5.
Eur J Med Chem ; 137: 176-195, 2017 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-28586718

RESUMO

Recent years have seen much effort to discover new chemotypes of BRD4 inhibitors. Interestingly, some kinase inhibitors have been demonstrated to be potent bromodomain inhibitors, especially the PLK1 inhibitor BI-2536 and the JAK2 inhibitor TG101209, which can bind to BRD4 with IC50 values of 0.025 µM and 0.13 µM, respectively. Although the concept of dual inhibition is intriguing, selective BRD4 inhibitors are preferred as they may diminish off-target effects and provide more flexibility in anticancer drug combination therapy. Inspired by BI-2536, we designed and prepared a series of dihydroquinoxalin-2(1H)-one derivatives as selective bromodomain inhibitors. We found compound 54 had slightly higher activity than (+)-JQ1 in the fluorescence anisotropy assay and potent antiproliferative cellular activity in the MM.1S cell line. We have successfully solved the cocrystal structure of 52 in complex with BRD4-BD1, providing a solid structural basis for the binding mode of compounds of this series. Compound 54 exhibited high selectivity over most non-BET subfamily members and did not show bioactivity towards the PLK1 kinase at 10 or 1 µM. From in vivo studies, compound 54 demonstrated a good PK profile, and the results from in vivo pharmacological studies clearly showed the efficacy of 54 in the mouse MM.1S xenograft model.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Descoberta de Drogas , Proteínas Nucleares/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Quinoxalinas/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Proteínas Nucleares/metabolismo , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Quinoxalinas/síntese química , Quinoxalinas/química , Relação Estrutura-Atividade , Fatores de Transcrição/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Quinase 1 Polo-Like
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA