RESUMO
The Mexico City Prospective Study is a prospective cohort of more than 150,000 adults recruited two decades ago from the urban districts of Coyoacán and Iztapalapa in Mexico City1. Here we generated genotype and exome-sequencing data for all individuals and whole-genome sequencing data for 9,950 selected individuals. We describe high levels of relatedness and substantial heterogeneity in ancestry composition across individuals. Most sequenced individuals had admixed Indigenous American, European and African ancestry, with extensive admixture from Indigenous populations in central, southern and southeastern Mexico. Indigenous Mexican segments of the genome had lower levels of coding variation but an excess of homozygous loss-of-function variants compared with segments of African and European origin. We estimated ancestry-specific allele frequencies at 142 million genomic variants, with an effective sample size of 91,856 for Indigenous Mexican ancestry at exome variants, all available through a public browser. Using whole-genome sequencing, we developed an imputation reference panel that outperforms existing panels at common variants in individuals with high proportions of central, southern and southeastern Indigenous Mexican ancestry. Our work illustrates the value of genetic studies in diverse populations and provides foundational imputation and allele frequency resources for future genetic studies in Mexico and in the United States, where the Hispanic/Latino population is predominantly of Mexican descent.
Assuntos
Sequenciamento do Exoma , Genoma Humano , Genótipo , Hispânico ou Latino , Adulto , Humanos , África/etnologia , América/etnologia , Europa (Continente)/etnologia , Frequência do Gene/genética , Genética Populacional , Genoma Humano/genética , Técnicas de Genotipagem , Hispânico ou Latino/genética , Homozigoto , Mutação com Perda de Função/genética , México , Estudos ProspectivosRESUMO
Clonal haematopoiesis involves the expansion of certain blood cell lineages and has been associated with ageing and adverse health outcomes1-5. Here we use exome sequence data on 628,388 individuals to identify 40,208 carriers of clonal haematopoiesis of indeterminate potential (CHIP). Using genome-wide and exome-wide association analyses, we identify 24 loci (21 of which are novel) where germline genetic variation influences predisposition to CHIP, including missense variants in the lymphocytic antigen coding gene LY75, which are associated with reduced incidence of CHIP. We also identify novel rare variant associations with clonal haematopoiesis and telomere length. Analysis of 5,041 health traits from the UK Biobank (UKB) found relationships between CHIP and severe COVID-19 outcomes, cardiovascular disease, haematologic traits, malignancy, smoking, obesity, infection and all-cause mortality. Longitudinal and Mendelian randomization analyses revealed that CHIP is associated with solid cancers, including non-melanoma skin cancer and lung cancer, and that CHIP linked to DNMT3A is associated with the subsequent development of myeloid but not lymphoid leukaemias. Additionally, contrary to previous findings from the initial 50,000 UKB exomes6, our results in the full sample do not support a role for IL-6 inhibition in reducing the risk of cardiovascular disease among CHIP carriers. Our findings demonstrate that CHIP represents a complex set of heterogeneous phenotypes with shared and unique germline genetic causes and varied clinical implications.
Assuntos
COVID-19 , Doenças Cardiovasculares , Humanos , Hematopoiese Clonal/genética , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genéticaRESUMO
A major goal in human genetics is to use natural variation to understand the phenotypic consequences of altering each protein-coding gene in the genome. Here we used exome sequencing1 to explore protein-altering variants and their consequences in 454,787 participants in the UK Biobank study2. We identified 12 million coding variants, including around 1 million loss-of-function and around 1.8 million deleterious missense variants. When these were tested for association with 3,994 health-related traits, we found 564 genes with trait associations at P ≤ 2.18 × 10-11. Rare variant associations were enriched in loci from genome-wide association studies (GWAS), but most (91%) were independent of common variant signals. We discovered several risk-increasing associations with traits related to liver disease, eye disease and cancer, among others, as well as risk-lowering associations for hypertension (SLC9A3R2), diabetes (MAP3K15, FAM234A) and asthma (SLC27A3). Six genes were associated with brain imaging phenotypes, including two involved in neural development (GBE1, PLD1). Of the signals available and powered for replication in an independent cohort, 81% were confirmed; furthermore, association signals were generally consistent across individuals of European, Asian and African ancestry. We illustrate the ability of exome sequencing to identify gene-trait associations, elucidate gene function and pinpoint effector genes that underlie GWAS signals at scale.
Assuntos
Bancos de Espécimes Biológicos , Bases de Dados Genéticas , Sequenciamento do Exoma , Exoma/genética , África/etnologia , Ásia/etnologia , Asma/genética , Diabetes Mellitus/genética , Europa (Continente)/etnologia , Oftalmopatias/genética , Feminino , Predisposição Genética para Doença/genética , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Hipertensão/genética , Hepatopatias/genética , Masculino , Mutação , Neoplasias/genética , Característica Quantitativa Herdável , Reino UnidoRESUMO
Sarilumab is a human monoclonal antibody against interleukin (IL)-6Rα that has been approved for the treatment of adult patients with moderately to severely active rheumatoid arthritis (RA) and an inadequate response or intolerance to one or more disease-modifying antirheumatic drugs (DMARDs). Mild liver function test abnormalities have been observed in patients treated with sarilumab. We describe a genome-wide association study of bilirubin elevations in RA patients treated with sarilumab. Array genotyping and exome sequencing were performed on DNA samples from 1075 patients. Variants in the UGT1A1 gene were strongly associated with maximum bilirubin elevations in sarilumab-treated patients (rs4148325; p = 2.88 × 10-41) but were not associated with aminotransferase elevations. No other independent loci showed evidence of association with bilirubin elevations after sarilumab treatment. These findings suggest that most bilirubin increases during sarilumab treatment are related to genetic variation in UGT1A1 rather than underlying liver injury.
Assuntos
Antirreumáticos , Artrite Reumatoide , Adulto , Anticorpos Monoclonais Humanizados , Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Bilirrubina/uso terapêutico , Estudo de Associação Genômica Ampla , Glucuronosiltransferase/genética , Humanos , Resultado do TratamentoRESUMO
BACKGROUND: Alirocumab, an antibody that blocks PCSK9 (proprotein convertase subtilisin/kexin type 9), was associated with reduced major adverse cardiovascular events (MACE) and death in the ODYSSEY OUTCOMES trial (Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab). In this study, higher baseline levels of low-density lipoprotein cholesterol (LDL-C) predicted greater benefit from alirocumab treatment. Recent studies indicate high polygenic risk scores (PRS) for coronary artery disease (CAD) identify individuals at higher risk who derive increased benefit from statins. We performed post hoc analyses to determine whether high PRS for CAD identifies higher-risk individuals, independent of baseline LDL-C and other known risk factors, who might derive greater benefit from alirocumab treatment. METHODS: ODYSSEY OUTCOMES was a randomized, double-blind, placebo-controlled trial comparing alirocumab or placebo in 18 924 patients with acute coronary syndrome and elevated atherogenic lipoproteins despite optimized statin treatment. The primary endpoint (MACE) comprised death of CAD, nonfatal myocardial infarction, ischemic stroke, or unstable angina requiring hospitalization. A genome-wide PRS for CAD comprising 6 579 025 genetic variants was evaluated in 11 953 patients with available DNA samples. Analysis of MACE risk was performed in placebo-treated patients, whereas treatment benefit analysis was performed in all patients. RESULTS: The incidence of MACE in the placebo group was related to PRS for CAD: 17.0% for high PRS patients (>90th percentile) and 11.4% for lower PRS patients (≤90th percentile; P<0.001); this PRS relationship was not explained by baseline LDL-C or other established risk factors. Both the absolute and relative reduction of MACE by alirocumab compared with placebo was greater in high versus low PRS patients. There was an absolute reduction by alirocumab in high versus low PRS groups of 6.0% and 1.5%, respectively, and a relative risk reduction by alirocumab of 37% in the high PRS group (hazard ratio, 0.63 [95% CI, 0.46-0.86]; P=0.004) versus a 13% reduction in the low PRS group (hazard ratio, 0.87 [95% CI, 0.78-0.98]; P=0.022; interaction P=0.04). CONCLUSIONS: A high PRS for CAD is associated with elevated risk for recurrent MACE after acute coronary syndrome and a larger absolute and relative risk reduction with alirocumab treatment, providing an independent tool for risk stratification and precision medicine.
Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Anticolesterolemiantes/uso terapêutico , Doença da Artéria Coronariana/genética , Herança Multifatorial/genética , Pró-Proteína Convertase 9/genética , Idoso , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , LDL-Colesterol/sangue , Doença da Artéria Coronariana/tratamento farmacológico , Método Duplo-Cego , Feminino , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Hipercolesterolemia/prevenção & controle , Masculino , Pessoa de Meia-Idade , Inibidores de PCSK9 , Efeito Placebo , Modelos de Riscos Proporcionais , Pró-Proteína Convertase 9/metabolismo , Fatores de RiscoRESUMO
Nearly one-half of asthmatic patients do not respond to the most commonly prescribed controller therapy, inhaled corticosteroids (ICS). We conducted an expression quantitative trait loci (eQTL) analysis using >300 expression microarrays (from 117 lymphoblastoid cell lines) in corticosteroid (dexamethasone) treated and untreated cells derived from asthmatic subjects in the Childhood Asthma Management Program (CAMP) clinical trial. We then tested the associations of eQTL with longitudinal change in airway responsiveness to methacholine (LnPC20) on ICS. We identified 2484 cis-eQTL affecting 767 genes following dexamethasone treatment. A significant over-representation of lnPC20-associated cis-eQTL [190 single-nucleotide polymorphisms (SNPs)] among differentially expressed genes (odds ratio = 1.76, 95% confidence interval: 1.35-2.29) was noted in CAMP Caucasians. Forty-six of these 190 clinical associations were replicated in CAMP African Americans, including seven SNPs near six genes meeting criteria for genome-wide significance (P < 2 × 10(-7)). Notably, the majority of genome-wide findings would not have been uncovered via analysis of untreated samples. These results indicate that identifying eQTL after relevant environmental perturbation enables identification of true pharmacogenetic variants.
Assuntos
Asma/genética , Dexametasona/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Cloreto de Metacolina/farmacologia , Locos de Características Quantitativas , Negro ou Afro-Americano/genética , Asma/tratamento farmacológico , Linhagem Celular , Criança , Pré-Escolar , Humanos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/efeitos dos fármacos , População Branca/genéticaRESUMO
RATIONALE: ß2-Agonists are the most common form of treatment of asthma, but there is significant variability in response to these medications. A significant proportion of this responsiveness may be heritable. OBJECTIVES: To investigate whether a genome-wide association study (GWAS) could identify novel pharmacogenetic loci in asthma. METHODS: We performed a GWAS of acute bronchodilator response (BDR) to inhaled ß2-agonists. A total of 444,088 single-nucleotide polymorphisms (SNPs) were examined in 724 individuals from the SNP Health Association Resource (SHARe) Asthma Resource Project (SHARP). The top 50 SNPs were carried forward to replication in a population of 444 individuals. MEASUREMENTS AND MAIN RESULTS: The combined P value for four SNPs reached statistical genome-wide significance aftercorrecting for multiple comparisons. Combined P values for rs350729, rs1840321, rs1384918, and rs1319797 were 2.21 × 10(-10), 5.75 × 10(-8), 9.3 × 10(-8), and 3.95 × 10(-8), respectively. The significant variants all map to a novel genetic region on chromosome 2 near the ASB3 gene, a region associated with smooth muscle proliferation. As compared with the wild type, the presence of the minor alleles reduced the degree of BDR by 20% in the original population and by a similar percentage in the confirmatory population. CONCLUSIONS: These GWAS findings for BDR in subjects with asthma suggest that a gene associated with smooth muscle proliferation may influence a proportion of the smooth muscle relaxation that occurs in asthma.
Assuntos
Repetição de Anquirina/genética , Asma/tratamento farmacológico , Asma/genética , Cromossomos Humanos Par 2/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único/genética , Mecânica Respiratória/genética , Proteínas Supressoras da Sinalização de Citocina/genética , Agonistas de Receptores Adrenérgicos beta 2 , Broncodilatadores , Criança , Pré-Escolar , Feminino , Frequência do Gene , Técnicas de Genotipagem , Humanos , Masculino , Músculo Liso/fisiologia , Fenótipo , Receptores Adrenérgicos beta 2/genéticaRESUMO
LMX1B encodes a homeodomain-containing transcription factor that is essential during development. Mutations in LMX1B cause nail-patella syndrome, characterized by dysplasia of the patellae, nails, and elbows and FSGS with specific ultrastructural lesions of the glomerular basement membrane (GBM). By linkage analysis and exome sequencing, we unexpectedly identified an LMX1B mutation segregating with disease in a pedigree of five patients with autosomal dominant FSGS but without either extrarenal features or ultrastructural abnormalities of the GBM suggestive of nail-patella-like renal disease. Subsequently, we screened 73 additional unrelated families with FSGS and found mutations involving the same amino acid (R246) in 2 families. An LMX1B in silico homology model suggested that the mutated residue plays an important role in strengthening the interaction between the LMX1B homeodomain and DNA; both identified mutations would be expected to diminish such interactions. In summary, these results suggest that isolated FSGS could result from mutations in genes that are also involved in syndromic forms of FSGS. This highlights the need to include these genes in all diagnostic approaches to FSGS that involve next-generation sequencing.
Assuntos
Glomerulosclerose Segmentar e Focal/genética , Proteínas com Homeodomínio LIM/genética , Síndrome da Unha-Patela/genética , Fatores de Transcrição/genética , Adolescente , Adulto , Criança , Feminino , Genes Dominantes , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem , Análise de Sequência de DNA , Adulto JovemRESUMO
Purpose: This analysis investigated potential associations between gene variants and clinical end points in the VIEW 1 and 2 randomized clinical trials of intravitreal aflibercept and ranibizumab in neovascular age-related macular degeneration (AMD). Methods: A genome-wide association analysis was conducted in a subgroup of patients from VIEW 1 and 2 consenting to the optional pharmacogenetic analysis. Results: Data were pooled from 780 samples from patients representative of the overall VIEW 1 and 2 populations. After Bonferroni correction for multiplicity and statistical adjustment for baseline risk factors, no significant associations were found between previously identified prognostic AMD gene variants and treatment response according to key prespecified VIEW 1 and 2 end points. Genome-wide, there were no significant genetic associations in patients experiencing gains of ≥15 Early Treatment of Diabetic Retinopathy Study letters after 1 or 2 years of treatment. A cluster of variants in ANO2 (encoding anoctamin 2, a calcium-activated chloride channel expressed on photoreceptor cells) on chromosome 12 reached the level of significance for loss of ≥5 letters after 1 year of treatment (P < 5 × 10-8), with the ANO2 rs2110166 SNP demonstrating highly significant association (P = 1.99 × 10-8). Carriers of the ANO2 rs2110166 TT genotype showed a robust increase in visual acuity versus baseline compared with a small decrease in those with the TC genotype. Conclusions: None of the potential prognostic candidate genes were associated with the clinical end points for treated patients. Preliminary analyses suggest an association of ANO2 with retinal function, with a potential impact on vision of approximately one line over at least the first year. Further investigation of the function of ANO2 in retinal pathophysiology is merited.
Assuntos
Inibidores da Angiogênese , Anoctaminas , Estudo de Associação Genômica Ampla , Injeções Intravítreas , Polimorfismo de Nucleotídeo Único , Ranibizumab , Receptores de Fatores de Crescimento do Endotélio Vascular , Proteínas Recombinantes de Fusão , Fator A de Crescimento do Endotélio Vascular , Acuidade Visual , Humanos , Masculino , Feminino , Inibidores da Angiogênese/uso terapêutico , Idoso , Acuidade Visual/fisiologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Ranibizumab/uso terapêutico , Proteínas Recombinantes de Fusão/uso terapêutico , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Anoctaminas/genética , Degeneração Macular Exsudativa/genética , Degeneração Macular Exsudativa/tratamento farmacológico , Idoso de 80 Anos ou mais , Genótipo , Resultado do Tratamento , Farmacogenética , Testes FarmacogenômicosRESUMO
RATIONALE: To date, most studies aimed at discovering genetic factors influencing treatment response in asthma have focused on biologic candidate genes. Genome-wide association studies (GWAS) can rapidly identify novel pharmacogenetic loci. OBJECTIVES: To investigate if GWAS can identify novel pharmacogenetic loci in asthma. METHODS: Using phenotypic and GWAS genotype data available through the NHLBI-funded Single-nucleotide polymorphism Health association-Asthma Resource Project, we analyzed differences in FEV(1) in response to inhaled corticosteroids in 418 white subjects with asthma. Of the 444,088 single nucleotide polymorphisms (SNPs) analyzed, the lowest 50 SNPs by P value were genotyped in an independent clinical trial population of 407 subjects with asthma. MEASUREMENTS AND MAIN RESULTS: The lowest P value for the GWAS analysis was 2.09 × 10(-6). Of the 47 SNPs successfully genotyped in the replication population, three were associated under the same genetic model in the same direction, including two of the top four SNPs ranked by P value. Combined P values for these SNPs were 1.06 × 10(-5) for rs3127412 and 6.13 × 10(-6) for rs6456042. Although these two were not located within a gene, they were tightly correlated with three variants mapping to potentially functional regions within the T gene. After genotyping, each T gene variant was also associated with lung function response to inhaled corticosteroids in each of the trials associated with rs3127412 and rs6456042 in the initial GWAS analysis. On average, there was a twofold to threefold difference in FEV(1) response for those subjects homozygous for the wild-type versus mutant alleles for each T gene SNP. CONCLUSIONS: Genome-wide association has identified the T gene as a novel pharmacogenetic locus for inhaled corticosteroid response in asthma.
Assuntos
Corticosteroides/uso terapêutico , Asma/tratamento farmacológico , Asma/genética , Proteínas Fetais/genética , Terapia de Alvo Molecular/métodos , Proteínas com Domínio T/genética , Adolescente , Corticosteroides/genética , Adulto , Alelos , Criança , Pré-Escolar , Feminino , Proteínas Fetais/efeitos dos fármacos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Farmacogenética , Polimorfismo de Nucleotídeo Único , Prognóstico , Testes de Função Respiratória , Medição de Risco , Índice de Gravidade de Doença , Proteínas com Domínio T/efeitos dos fármacos , Resultado do Tratamento , Adulto JovemRESUMO
OBJECTIVES: Treatments that prevent sepsis complications are needed. Circulating lipid and protein assemblies-lipoproteins play critical roles in clearing pathogens from the bloodstream. We investigated whether early inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) may accelerate bloodstream clearance of immunogenic bacterial lipids and improve sepsis outcomes. DESIGN: Genetic and clinical epidemiology, and experimental models. SETTING: Human genetics cohorts, secondary analysis of a phase 3 randomized clinical trial enrolling patients with cardiovascular disease (Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab [ODYSSEY OUTCOMES]; NCT01663402), and experimental murine models of sepsis. PATIENTS OR SUBJECTS: Nine human cohorts with sepsis (total n = 12,514) were assessed for an association between sepsis mortality and PCSK9 loss-of-function (LOF) variants. Incident or fatal sepsis rates were evaluated among 18,884 participants in a post hoc analysis of ODYSSEY OUTCOMES. C57BI/6J mice were used in Pseudomonas aeruginosa and Staphylococcus aureus bacteremia sepsis models, and in lipopolysaccharide-induced animal models. INTERVENTIONS: Observational human cohort studies used genetic PCSK9 LOF variants as instrumental variables. ODYSSEY OUTCOMES participants were randomized to alirocumab or placebo. Mice were administered alirocumab, a PCSK9 inhibitor, at 5 mg/kg or 25 mg/kg subcutaneously, or isotype-matched control, 48 hours prior to the induction of bacterial sepsis. Mice did not receive other treatments for sepsis. MEASUREMENTS AND MAIN RESULTS: Across human cohort studies, the effect estimate for 28-day mortality after sepsis diagnosis associated with genetic PCSK9 LOF was odds ratio = 0.86 (95% CI, 0.67-1.10; p = 0.24). A significant association was present in antibiotic-treated patients. In ODYSSEY OUTCOMES, sepsis frequency and mortality were infrequent and did not significantly differ by group, although both were numerically lower with alirocumab vs. placebo (relative risk of death from sepsis for alirocumab vs. placebo, 0.62; 95% CI, 0.32-1.20; p = 0.15). Mice treated with alirocumab had lower endotoxin levels and improved survival. CONCLUSIONS: PCSK9 inhibition may improve clinical outcomes in sepsis in preventive, pretreatment settings.
RESUMO
Vitamin D deficiency is becoming more apparent in many populations. Genetic factors may play a role in the maintenance of vitamin D levels. The objective of this study was to perform a genome-wide analysis (GWAS) of vitamin D levels, including replication of prior GWAS results. We measured 25-hydroxyvitamin D (25(OH)D) levels in serum collected at the time of enrollment and at year 4 in 572 Caucasian children with asthma, who were part of a multi-center clinical trial, the Childhood Asthma Management Program. Replication was performed in a second cohort of 592 asthmatics from Costa Rica and a third cohort of 516 Puerto Rican asthmatics. In addition, we attempted replication of three SNPs that were previously identified in a large GWAS of Caucasian individuals. The setting included data from a clinical trial of childhood asthmatics and two cohorts of asthmatics recruited for genetic studies of asthma. The main outcome measure was circulating 25(OH)D levels. The 25(OH)D levels at the two time-points were only modestly correlated with each other (intraclass correlation coefficient = 0.33) in the CAMP population. We identified SNPs that were nominally associated with 25(OH)D levels at two time-points in CAMP, and replicated four SNPs in the Costa Rican cohort: rs11002969, rs163221, rs1678849, and rs4864976. However, these SNPs were not significantly associated with 25(OH)D levels in a third population of Puerto Rican asthmatics. We were able to replicate the SNP with the strongest effect, previously reported in a large GWAS: rs2282679 (GC), and we were able to replicate another SNP, rs10741657 (CYP2R1), to a lesser degree. We were able to replicate two of three prior significant findings in a GWAS of 25(OH)D levels. Other SNPs may be additionally associated with 25(OH)D levels in certain populations.
Assuntos
Asma/genética , Estudo de Associação Genômica Ampla , Vitamina D/sangue , Criança , Genótipo , Humanos , Fenótipo , Polimorfismo de Nucleotídeo ÚnicoRESUMO
BACKGROUND: Statin-associated muscle symptoms (SAMS) are the most frequently reported adverse events for statin therapies. Previous studies have reported an association between the p.Val174Ala missense variant in SLCO1B1 and SAMS in simvastatin-treated subjects; however, evidence for genetic predictors of SAMS in atorvastatin- or rosuvastatin-treated subjects is currently lacking. METHODS: ODYSSEY OUTCOMES (Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab; n=18 924) was a double-blind, randomized, placebo-controlled study evaluating the efficacy and safety of alirocumab (a PCSK9 [proprotein convertase subtilisin/kexin type 9] inhibitor) in acute coronary syndrome patients receiving high-intensity statin therapy. The goal of this pharmacogenomic analysis was to identify genetic variants associated with atorvastatin- and rosuvastatin-mediated SAMS among ODYSSEY OUTCOMES subjects who consented to participate in the genetic study (n=11 880). We performed multi-ancestry exome-wide and genome-wide association studies and gene burden analysis across 2 phenotypes (clinical SAMS [n=10 617] and creatine kinase levels [n=9630]). RESULTS: A novel genome-wide significant association for an intronic variant (rs6667912) located within TMEM9 (odds ratio [95% CI], 1.39 [1.24-1.55]; P=3.71×10-8) for patients with clinical SAMS (cases=894, controls=9723) was identified. This variant is located ≈30 kb upstream of CACNA1S, a locus associated with severe SAMS. We replicated 2 loci, at LINC0093 and LILRB5, previously associated with creatine kinase levels during statin treatment. No association was observed between p.Val174Ala (rs4149056) in SLCO1B1 and SAMS (odds ratio [95% CI], 1.03 [0.90-1.18]; P=0.69). CONCLUSIONS: This study comprises the largest discovery exome-wide and genome-wide association study for atorvastatin- or rosuvastatin-mediated SAMS to date. These novel genetic findings may provide biological/mechanistic insight into this drug-induced toxicity, and help identify at-risk patients before selection of lipid-lowering therapies.
Assuntos
Síndrome Coronariana Aguda , Atorvastatina , Inibidores de Hidroximetilglutaril-CoA Redutases , Músculos , Rosuvastatina Cálcica , Síndrome Coronariana Aguda/tratamento farmacológico , Antígenos CD , Atorvastatina/efeitos adversos , LDL-Colesterol , Creatina Quinase , Estudo de Associação Genômica Ampla , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Proteínas de Membrana , Músculos/efeitos dos fármacos , Inibidores de PCSK9 , Testes Farmacogenômicos , Receptores Imunológicos , Rosuvastatina Cálcica/efeitos adversosRESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters human host cells via angiotensin-converting enzyme 2 (ACE2) and causes coronavirus disease 2019 (COVID-19). Here, through a genome-wide association study, we identify a variant (rs190509934, minor allele frequency 0.2-2%) that downregulates ACE2 expression by 37% (P = 2.7 × 10-8) and reduces the risk of SARS-CoV-2 infection by 40% (odds ratio = 0.60, P = 4.5 × 10-13), providing human genetic evidence that ACE2 expression levels influence COVID-19 risk. We also replicate the associations of six previously reported risk variants, of which four were further associated with worse outcomes in individuals infected with the virus (in/near LZTFL1, MHC, DPP9 and IFNAR2). Lastly, we show that common variants define a risk score that is strongly associated with severe disease among cases and modestly improves the prediction of disease severity relative to demographic and clinical factors alone.
Assuntos
COVID-19 , Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , Estudo de Associação Genômica Ampla , Humanos , Fatores de Risco , SARS-CoV-2/genéticaRESUMO
BACKGROUND: Personalized health-care promises tailored health-care solutions to individual patients based on their genetic background and/or environmental exposure history. To date, disease prediction has been based on a few environmental factors and/or single nucleotide polymorphisms (SNPs), while complex diseases are usually affected by many genetic and environmental factors with each factor contributing a small portion to the outcome. We hypothesized that the use of random forests classifiers to select SNPs would result in an improved predictive model of asthma exacerbations. We tested this hypothesis in a population of childhood asthmatics. METHODS: In this study, using emergency room visits or hospitalizations as the definition of a severe asthma exacerbation, we first identified a list of top Genome Wide Association Study (GWAS) SNPs ranked by Random Forests (RF) importance score for the CAMP (Childhood Asthma Management Program) population of 127 exacerbation cases and 290 non-exacerbation controls. We predict severe asthma exacerbations using the top 10 to 320 SNPs together with age, sex, pre-bronchodilator FEV1 percentage predicted, and treatment group. RESULTS: Testing in an independent set of the CAMP population shows that severe asthma exacerbations can be predicted with an Area Under the Curve (AUC)=0.66 with 160-320 SNPs in comparison to an AUC score of 0.57 with 10 SNPs. Using the clinical traits alone yielded AUC score of 0.54, suggesting the phenotype is affected by genetic as well as environmental factors. CONCLUSIONS: Our study shows that a random forests algorithm can effectively extract and use the information contained in a small number of samples. Random forests, and other machine learning tools, can be used with GWAS studies to integrate large numbers of predictors simultaneously.