RESUMO
While the number and types of indoor air pollutants is rising, much is suspected but little is known about the impact of their potentially synergistic interactions, upon human health. Gases, particulate matter, organic compounds but also allergens and viruses, fall within the 'pollutant' definition. Distinct populations, such as children and allergy and asthma sufferers are highly susceptible, while a low socioeconomic background is a further susceptibility factor; however, no specific guidance is available. We spend most of our time indoors; for children, the school environment is of paramount importance and potentially amenable to intervention. The interactions between some pollutant classes have been studied. However, a lot is missing with respect to understanding interactions between specific pollutants of different classes in terms of concentrations, timing and sequence, to improve targeting and upgrade standards. SynAir-G is a European Commission-funded project aiming to reveal and quantify synergistic interactions between different pollutants affecting health, from mechanisms to real life, focusing on the school setting. It will develop a comprehensive and responsive multipollutant monitoring system, advance environmentally friendly interventions, and disseminate the generated knowledge to relevant stakeholders in accessible and actionable formats. The aim of this article it to put forward the SynAir-G hypothesis, and describe its background and objectives.
Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Asma , Poluentes Ambientais , Criança , Humanos , Poluição do Ar em Ambientes Fechados/efeitos adversos , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Material Particulado , Asma/epidemiologia , Asma/etiologia , Monitoramento AmbientalRESUMO
The EAACI Guidelines on the impact of short-term exposure to outdoor pollutants on asthma-related outcomes provide recommendations for prevention, patient care and mitigation in a framework supporting rational decisions for healthcare professionals and patients to individualize and improve asthma management and for policymakers and regulators as an evidence-informed reference to help setting legally binding standards and goals for outdoor air quality at international, national and local levels. The Guideline was developed using the GRADE approach and evaluated outdoor pollutants referenced in the current Air Quality Guideline of the World Health Organization as single or mixed pollutants and outdoor pesticides. Short-term exposure to all pollutants evaluated increases the risk of asthma-related adverse outcomes, especially hospital admissions and emergency department visits (moderate certainty of evidence at specific lag days). There is limited evidence for the impact of traffic-related air pollution and outdoor pesticides exposure as well as for the interventions to reduce emissions. Due to the quality of evidence, conditional recommendations were formulated for all pollutants and for the interventions reducing outdoor air pollution. Asthma management counselled by the current EAACI guidelines can improve asthma-related outcomes but global measures for clean air are needed to achieve significant impact.
Assuntos
Poluentes Atmosféricos , Asma , Exposição Ambiental , Asma/etiologia , Asma/prevenção & controle , Humanos , Poluentes Atmosféricos/efeitos adversos , Exposição Ambiental/efeitos adversos , Poluição do Ar/efeitos adversosRESUMO
Air pollution is one of the biggest environmental threats for asthma. Its impact is augmented by climate change. To inform the recommendations of the EAACI Guidelines on the environmental science for allergic diseases and asthma, a systematic review (SR) evaluated the impact on asthma-related outcomes of short-term exposure to outdoor air pollutants (PM2.5, PM10, NO2, SO2, O3, and CO), heavy traffic, outdoor pesticides, and extreme temperatures. Additionally, the SR evaluated the impact of the efficacy of interventions reducing outdoor pollutants. The risk of bias was assessed using ROBINS-E tools and the certainty of the evidence by using GRADE. Short-term exposure to PM2.5, PM10, and NO2 probably increases the risk of asthma-related hospital admissions (HA) and emergency department (ED) visits (moderate certainty evidence). Exposure to heavy traffic may increase HA and deteriorate asthma control (low certainty evidence). Interventions reducing outdoor pollutants may reduce asthma exacerbations (low to very low certainty evidence). Exposure to fumigants may increase the risk of new-onset asthma in agricultural workers, while exposure to 1,3-dichloropropene may increase the risk of asthma-related ED visits (low certainty evidence). Heatwaves and cold spells may increase the risk of asthma-related ED visits and HA and asthma mortality (low certainty evidence).
Assuntos
Poluição do Ar , Asma , Exposição Ambiental , Humanos , Asma/etiologia , Asma/prevenção & controle , Asma/epidemiologia , Poluição do Ar/efeitos adversos , Exposição Ambiental/efeitos adversos , Poluentes Atmosféricos/efeitos adversos , Hipersensibilidade/etiologia , Hipersensibilidade/epidemiologia , Hipersensibilidade/prevenção & controleRESUMO
To inform the clinical practice guidelines' recommendations developed by the European Academy of Allergy and Clinical Immunology systematic reviews (SR) assessed using GRADE on the impact of environmental tobacco smoke (ETS) and active smoking on the risk of new-onset asthma/recurrent wheezing (RW)/low lung function (LF), and on asthma-related outcomes. Only longitudinal studies were included, almost all on combustion cigarettes, only one assessing e-cigarettes and LF. According to the first SR (67 studies), prenatal ETS increases the risk of RW (moderate certainty evidence) and may increase the risk of new-onset asthma and of low LF (low certainty evidence). Postnatal ETS increases the risk of new-onset asthma and of RW (moderate certainty evidence) and may impact LF (low certainty evidence). Combined in utero and postnatal ETS may increase the risk of new-onset asthma (low certainty evidence) and increases the risk of RW (moderate certainty evidence). According to the second SR (24 studies), ETS increases the risk of severe asthma exacerbations and impairs asthma control and LF (moderate certainty evidence). According to the third SR (25 studies), active smoking increases the risk of severe asthma exacerbations and of suboptimal asthma control (moderate certainty evidence) and may impact asthma-related quality-of-life and LF (low certainty evidence).
Assuntos
Asma , Sistemas Eletrônicos de Liberação de Nicotina , Poluição por Fumaça de Tabaco , Humanos , Asma/etiologia , Asma/prevenção & controle , Poluição por Fumaça de Tabaco/efeitos adversos , Gravidez , Guias de Prática Clínica como Assunto , Exposição Ambiental/efeitos adversos , FemininoRESUMO
Systematic review using GRADE of the impact of exposure to volatile organic compounds (VOCs), cleaning agents, mould/damp, pesticides on the risk of (i) new-onset asthma (incidence) and (ii) adverse asthma-related outcomes (impact). MEDLINE, EMBASE and Web of Science were searched for indoor pollutant exposure studies reporting on new-onset asthma and critical and important asthma-related outcomes. Ninety four studies were included: 11 for VOCs (7 for incidenceand 4 for impact), 25 for cleaning agents (7 for incidenceand 8 for impact), 48 for damp/mould (26 for incidence and 22 for impact) and 10 for pesticides (8 for incidence and 2 for impact). Exposure to damp/mould increases the risk of new-onset wheeze (moderate certainty evidence). Exposure to cleaning agents may be associated with a higher risk of new-onset asthma and with asthma severity (low level of certainty). Exposure to pesticides and VOCs may increase the risk of new-onset asthma (very low certainty evidence). The impact on asthma-related outcomes of all major indoor pollutants is uncertain. As the level of certainty is low or very low for most of the available evidence on the impact of indoor pollutants on asthma-related outcomes more rigorous research in the field is warranted.
Assuntos
Poluição do Ar em Ambientes Fechados , Asma , Compostos Orgânicos Voláteis , Humanos , Asma/etiologia , Asma/epidemiologia , Poluição do Ar em Ambientes Fechados/efeitos adversos , Compostos Orgânicos Voláteis/efeitos adversos , Exposição Ambiental/efeitos adversos , Hipersensibilidade/etiologia , Hipersensibilidade/epidemiologia , Incidência , Praguicidas/efeitos adversosRESUMO
BACKGROUND: There is evidence that global anthropogenic climate change may be impacting floral phenology and the temporal and spatial characteristics of aero-allergenic pollen. Given the extent of current and future climate uncertainty, there is a need to strengthen predictive pollen forecasts. METHODS: The study aims to use CatBoost (CB) and deep learning (DL) models for predicting the daily total pollen concentration up to 14 days in advance for 23 cities, covering all five continents. The model includes the projected environmental parameters, recent concentrations (1, 2 and 4 weeks), and the past environmental explanatory variables, and their future values. RESULTS: The best pollen forecasts include Mexico City (R2(DL_7) ≈ .7), and Santiago (R2(DL_7) ≈ .8) for the 7th forecast day, respectively; while the weakest pollen forecasts are made for Brisbane (R2(DL_7) ≈ .4) and Seoul (R2(DL_7) ≈ .1) for the 7th forecast day. The global order of the five most important environmental variables in determining the daily total pollen concentrations is, in decreasing order: the past daily total pollen concentration, future 2 m temperature, past 2 m temperature, past soil temperature in 28-100 cm depth, and past soil temperature in 0-7 cm depth. City-related clusters of the most similar distribution of feature importance values of the environmental variables only slightly change on consecutive forecast days for Caxias do Sul, Cape Town, Brisbane, and Mexico City, while they often change for Sydney, Santiago, and Busan. CONCLUSIONS: This new knowledge of the ecological relationships of the most remarkable variables importance for pollen forecast models according to clusters, cities and forecast days is important for developing and improving the accuracy of airborne pollen forecasts.
Assuntos
Alérgenos , Previsões , Pólen , Pólen/imunologia , Previsões/métodos , Humanos , Mudança Climática , Modelos Teóricos , Monitoramento Ambiental/métodosRESUMO
The high prevalence of hay fever in Europe has raised concerns about the implications of climate change-induced higher temperatures on pollen production. Our study focuses on downy birch pollen production across Europe by analyzing 456 catkins during 2019-2021 in 37 International Phenological Gardens (IPG) spanning a large geographic gradient. As IPGs rely on genetically identical plants, we were able to reduce the effects of genetic variability. We studied the potential association with masting behavior and three model specifications based on mean and quantile regression to assess the impact of meteorology (e.g., temperature and precipitation) and atmospheric gases (e.g., ozone (O3) and carbon-dioxide (CO2)) on pollen and catkin production, while controlling for tree age approximated by stem circumference. The results revealed a substantial geographic variability in mean pollen production, ranging from 1.9 to 2.5 million pollen grains per catkin. Regression analyses indicated that elevated average temperatures of the previous summer corresponded to increased pollen production, while higher O3 levels led to a reduction. Additionally, catkins number was positively influenced by preceding summer's temperature and precipitation but negatively by O3 levels. The investigation of quantile effects revealed that the impacts of mean temperature and O3 levels from the previous summer varied throughout the conditional response distribution. We found that temperature predominantly affected trees characterized by a high pollen production. We therefore suggest that birches modulate their physiological processes to optimize pollen production under varying temperature regimes. In turn, O3 levels negatively affected trees with pollen production levels exceeding the conditional median. We conclude that future temperature increase might exacerbate pollen production while other factors may modify (decrease in the case of O3 and amplify for precipitation) this effect. Our comprehensive study sheds light on potential impacts of climate change on downy birch pollen production, which is crucial for birch reproduction and human health.
Assuntos
Betula , Mudança Climática , Pólen , Betula/crescimento & desenvolvimento , Europa (Continente) , Ozônio/análise , Temperatura , Poluentes Atmosféricos/análiseRESUMO
Pollen exposure weakens the immunity against certain seasonal respiratory viruses by diminishing the antiviral interferon response. Here we investigate whether the same applies to the pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is sensitive to antiviral interferons, if infection waves coincide with high airborne pollen concentrations. Our original hypothesis was that more airborne pollen would lead to increases in infection rates. To examine this, we performed a cross-sectional and longitudinal data analysis on SARS-CoV-2 infection, airborne pollen, and meteorological factors. Our dataset is the most comprehensive, largest possible worldwide from 130 stations, across 31 countries and five continents. To explicitly investigate the effects of social contact, we additionally considered population density of each study area, as well as lockdown effects, in all possible combinations: without any lockdown, with mixed lockdown-no lockdown regime, and under complete lockdown. We found that airborne pollen, sometimes in synergy with humidity and temperature, explained, on average, 44% of the infection rate variability. Infection rates increased after higher pollen concentrations most frequently during the four previous days. Without lockdown, an increase of pollen abundance by 100 pollen/m3 resulted in a 4% average increase of infection rates. Lockdown halved infection rates under similar pollen concentrations. As there can be no preventive measures against airborne pollen exposure, we suggest wide dissemination of pollen-virus coexposure dire effect information to encourage high-risk individuals to wear particle filter masks during high springtime pollen concentrations.
Assuntos
COVID-19/epidemiologia , Internacionalidade , Pólen/efeitos adversos , COVID-19/virologia , Geografia , Humanos , Estudos Longitudinais , SARS-CoV-2/fisiologiaRESUMO
Limited number of studies have focused on the impact of pollen exposure on asthma. As a part of the EAACI Guidelines on Environment Science, this first systematic review on the relationship of pollen exposure to asthma exacerbations aimed to bridge this knowledge gap in view of implementing recommendations of prevention. We searched electronic iPubMed, Embase, and Web of Science databases using a set of MeSH terms and related synonyms and identified 73 eligible studies that were included for systemic review. When possible, meta-analyses were conducted. Overall meta-analysis suggests that outdoor pollen exposure may have an effect on asthma exacerbation, but caution is needed due to the low number of studies and their heterogeneity. The strongest associations were found between asthma attacks, asthma-related ED admissions or hospitalizations, and an increase in grass pollen concentration in the previous 2-day overall in children aged less than 18 years of age. Tree pollen may increase asthma-related ED visits or admissions lagged up to 7-day overall in individuals younger than 18 years. Rare data show that among subjects under 18 years of age, an exposure to grass pollen lagged up to 3 days may lower lung function. Further research considering effect modifiers of pollen sensitization, hay fever, asthma, air pollution, green spaces, and pre-existing medications is urgently warranted to better evaluate the impacts of pollen on asthma exacerbation. Preventive measures in relation to pollen exposure should be integrated in asthma control as pollen increase continues due to climate change.
Assuntos
Poluição do Ar , Asma , Criança , Humanos , Adolescente , Recém-Nascido , Alérgenos/análise , Pólen , Asma/epidemiologia , Asma/etiologia , Fatores de RiscoRESUMO
High-altitude environments are highly susceptible to the effects of climate change. Thus, it is crucial to examine and understand the behaviour of specific plant traits along altitudinal gradients, which offer a real-life laboratory for analysing future impacts of climate change. The available information on how pollen production varies at different altitudes in mountainous areas is limited. In this study, we investigated pollen production of 17 birch (Betula pubescens Ehrh.) individuals along an altitudinal gradient in the European Alps. We sampled catkins at nine locations in the years 2020-2021 and monitored air temperatures. We investigated how birch pollen, flowers and inflorescences are produced in relation to thermal factors at various elevations. We found that mean pollen production of Betula pubescens Ehrh. varied between 0.4 and 8.3 million pollen grains per catkin. We did not observe any significant relationships between the studied reproductive metrics and altitude. However, minimum temperature of the previous summer was found to be significantly correlated to pollen (rs = 0.504, p = 0.039), flower (rs = 0.613, p = 0.009) and catkin (rs = 0.642, p = 0.005) production per volume unit of crown. Therefore, we suggest that temperature variability even at such small scales is very important for studying the response related to pollen production.
Assuntos
Betula , Pólen , Humanos , Betula/fisiologia , Alérgenos , Meio AmbienteRESUMO
BACKGROUND: Allergic diseases pose a health problem worldwide. Pollen are widespread aeroallergens which can cause symptoms like shortness of breath, cough, itchy eyes, or rhinitis. Apart from preventive measures and pharmacological treatment, also non-pharmacological interventions have been suggested to reduce symptoms. The objective of this work was to review studies investigating the effectiveness of non-pharmacologic interventions to reduce allergic symptoms. METHODS: PubMed, EMBASE, and CENTRAL were systematically reviewed in July 2018 and April 2020. Several authors worked on the screening of titles, abstracts, and full texts. One author for each literature search performed the data extraction and the risk of bias assessment. Studies were included if they met the inclusion criteria defined by the PECOs. Studies which investigating the effect of non-pharmacologic interventions on patients with allergic rhinitis were included. RESULTS: Twenty-nine studies investigating eleven types of non-pharmacologic interventions to avoid and reduce allergic symptoms due to pollen exposure were included in this review. Out of all studies, seven studies addressed nasal rinsing and 22 included acupuncture, air filtering, artisanal tears, individual allergen avoidance advice, various nasal applications, self-hypnosis, rhinophototherapy, and wraparound sunglasses. CONCLUSION: Most studies had a high risk of bias and small sample sizes. There were only a few high-quality studies that give hints about the effectiveness of non-pharmacological interventions. For future research, more high-quality studies are required to confirm the effectiveness of simple, safe, and cost-effective interventions.
Assuntos
Rinite Alérgica , Rinite , Alérgenos , Humanos , PólenRESUMO
We studied the diversity and abundance of the airborne fungal spores in the city of Thessaloniki, Greece, for two consecutive years. Air samples were collected at one rooftop station (at 30 m) and six near-ground stations (at 1.5 m) that differed in the size and composition of adjacent green spaces. The effects of meteorological factors on airborne fungal spore concentrations were also explored. Cladosporium spores were dominant everywhere in the air of the city. The total concentration of the airborne fungal spores at 30 m was 10 times lower than near the ground. Differences in concentration and composition were far less pronounced among near-ground stations. The attributes of the fungal spore season did not change in a consistent way among stations and years. Concentrations at the near-ground stations matched the grouping of the latter into stations of high, intermediate, and low urban green space. Minimum air temperature was the primary meteorological factor affecting spore abundance, followed by relative humidity. Airborne fungal spores are more homogeneously distributed in the air of the city, but their concentrations decrease more rapidly with height than pollen.
Assuntos
Meteorologia , Parques Recreativos , Febre , Grécia , Conceitos Meteorológicos , Esporos FúngicosRESUMO
Higher incidences of asthma during thunderstorms can pose a serious health risk. In this study, we estimate the thunderstorm asthma risk using statistical methods, with special focus on Bavaria, Southern Germany. In this approach, a dataset of asthma-related emergency cases for the study region is combined with meteorological variables and aeroallergen data to identify statistical relationships between the occurrence of asthma (predictand) and different environmental parameters (set of predictors). On the one hand, the results provide evidence for a weak but significant relationship between atmospheric stability indices and asthma emergencies in the region, but also show that currently thunderstorm asthma is not a major concern in Bavaria due to overall low incidences. As thunderstorm asthma can have severe consequences for allergic patients, the presented approach can be important for the development of emergency strategies in regions affected by thunderstorm asthma and under present and future climate change conditions.
Assuntos
Asma , Hipersensibilidade , Humanos , Asma/etiologia , Asma/induzido quimicamente , Alérgenos/toxicidade , Alemanha/epidemiologia , Tempo (Meteorologia)RESUMO
Climate change impacts on the structure and function of ecosystems will worsen public health issues like allergic diseases. Birch trees (Betula spp.) are important sources of aeroallergens in Central and Northern Europe. Birches are vulnerable to climate change as these trees are sensitive to increased temperatures and summer droughts. This study aims to examine the effect of climate change on airborne birch pollen concentrations in Central Europe using Bavaria in Southern Germany as a case study. Pollen data from 28 monitoring stations in Bavaria were used in this study, with time series of up 30 years long. An integrative approach was used to model airborne birch pollen concentrations taking into account drivers influencing birch tree abundance and birch pollen production and projections made according to different climate change and socioeconomic scenarios. Birch tree abundance is projected to decrease in parts of Bavaria at different rates, depending on the climate scenario, particularly in current centres of the species distribution. Climate change is expected to result in initial increases in pollen load but, due to the reduction in birch trees, the amount of airborne birch pollen will decrease at lower altitudes. Conversely, higher altitude areas will experience expansions in birch tree distribution and subsequent increases in airborne birch pollen in the future. Even considering restrictions for migration rates, increases in pollen load are likely in Southwestern areas, where positive trends have already been detected during the last three decades. Integrating models for the distribution and abundance of pollen sources and the drivers that control birch pollen production allowed us to model airborne birch pollen concentrations in the future. The magnitude of changes depends on location and climate change scenario.
Assuntos
Betula , Mudança Climática , Alérgenos , Ecossistema , PólenRESUMO
BACKGROUND: Pollen exposure induces local and systemic allergic immune responses in sensitized individuals, but nonsensitized individuals also are exposed to pollen. The kinetics of symptom expression under natural pollen exposure have never been systematically studied, especially in subjects without allergy. OBJECTIVE: We monitored the humoral immune response under natural pollen exposure to potentially uncover nasal biomarkers for in-season symptom severity and identify protective factors. METHODS: We compared humoral immune response kinetics in a panel study of subjects with seasonal allergic rhinitis (SAR) and subjects without allergy and tested for cross-sectional and interseasonal differences in levels of serum and nasal, total, and Betula verrucosa 1-specific immunoglobulin isotypes; immunoglobulin free light chains; cytokines; and chemokines. Nonsupervised principal component analysis was performed for all nasal immune variables, and single immune variables were correlated with in-season symptom severity by Spearman test. RESULTS: Symptoms followed airborne pollen concentrations in subjects with SAR, with a time lag between 0 and 13 days depending on the pollen type. Of the 7 subjects with nonallergy, 4 also exhibited in-season symptoms whereas 3 did not. Cumulative symptoms in those without allergy were lower than in those with SAR but followed the pollen exposure with similar kinetics. Nasal eotaxin-2, CCL22/MDC, and monocyte chemoattactant protein-1 (MCP-1) levels were higher in subjects with SAR, whereas IL-8 levels were higher in subjects without allergy. Principal component analysis and Spearman correlations identified nasal levels of IL-8, IL-33, and Betula verrucosa 1-specific IgG4 (sIgG4) and Betula verrucosa 1-specific IgE (sIgE) antibodies as predictive for seasonal symptom severity. CONCLUSIONS: Nasal pollen-specific IgA and IgG isotypes are potentially protective within the humoral compartment. Nasal levels of IL-8, IL-33, sIgG4 and sIgE could be predictive biomarkers for pollen-specific symptom expression, irrespective of atopy.
Assuntos
Alérgenos/imunologia , Antígenos de Plantas/imunologia , Pólen/imunologia , Rinite Alérgica Sazonal/imunologia , Adulto , Biomarcadores , Feminino , Humanos , Imunoglobulina A/sangue , Imunoglobulina A/imunologia , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Interleucina-33/imunologia , Interleucina-8/imunologia , Masculino , Pessoa de Meia-Idade , Mucosa Nasal/imunologia , Rinite Alérgica Sazonal/sangue , Estações do Ano , Adulto JovemRESUMO
BACKGROUND: Hundreds of plant species release their pollen into the air every year during early spring. During that period, pollen allergic as well as non-allergic patients frequently present to doctors with severe respiratory tract infections. Our objective was therefore to assess whether pollen may interfere with antiviral immunity. METHODS: We combined data from real-life human exposure cohorts, a mouse model and human cell culture to test our hypothesis. RESULTS: Pollen significantly diminished interferon-λ and pro-inflammatory chemokine responses of airway epithelia to rhinovirus and viral mimics and decreased nuclear translocation of interferon regulatory factors. In mice infected with respiratory syncytial virus, co-exposure to pollen caused attenuated antiviral gene expression and increased pulmonary viral titers. In non-allergic human volunteers, nasal symptoms were positively correlated with airborne birch pollen abundance, and nasal birch pollen challenge led to downregulation of type I and -III interferons in nasal mucosa. In a large patient cohort, numbers of rhinoviruspositive cases were correlated with airborne birch pollen concentrations. CONCLUSION: The ability of pollen to suppress innate antiviral immunity, independent of allergy, suggests that high-risk population groups should avoid extensive outdoor activities when pollen and respiratory virus seasons coincide.
Assuntos
Imunidade Inata , Pólen/efeitos adversos , Vírus Sinciciais Respiratórios , Rhinovirus , Animais , Humanos , Interferons , Camundongos , Mucosa NasalRESUMO
The effect of height on pollen concentration is not well documented and little is known about the near-ground vertical profile of airborne pollen. This is important as most measuring stations are on roofs, but patient exposure is at ground level. Our study used a big data approach to estimate the near-ground vertical profile of pollen concentrations based on a global study of paired stations located at different heights. We analyzed paired sampling stations located at different heights between 1.5 and 50â¯m above ground level (AGL). This provided pollen data from 59 Hirst-type volumetric traps from 25 different areas, mainly in Europe, but also covering North America and Australia, resulting in about 2,000,000 daily pollen concentrations analyzed. The daily ratio of the amounts of pollen from different heights per location was used, and the values of the lower station were divided by the higher station. The lower station of paired traps recorded more pollen than the higher trap. However, while the effect of height on pollen concentration was clear, it was also limited (average ratio 1.3, range 0.7-2.2). The standard deviation of the pollen ratio was highly variable when the lower station was located close to the ground level (below 10â¯m AGL). We show that pollen concentrations measured at >10â¯m are representative for background near-ground levels.