Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Cell ; 152(1-2): 196-209, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23332755

RESUMO

In eukaryotic cells a molecular chaperone network associates with translating ribosomes, assisting the maturation of emerging nascent polypeptides. Hsp70 is perhaps the major eukaryotic ribosome-associated chaperone and the first reported to bind cotranslationally to nascent chains. However, little is known about the underlying principles and function of this interaction. Here, we use a sensitive and global approach to define the cotranslational substrate specificity of the yeast Hsp70 SSB. We find that SSB binds to a subset of nascent polypeptides whose intrinsic properties and slow translation rates hinder efficient cotranslational folding. The SSB-ribosome cycle and substrate recognition is modulated by its ribosome-bound cochaperone, RAC. Deletion of SSB leads to widespread aggregation of newly synthesized polypeptides. Thus, cotranslationally acting Hsp70 meets the challenge of folding the eukaryotic proteome by stabilizing its longer, more slowly translated, and aggregation-prone nascent polypeptides.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Biossíntese de Proteínas , Dobramento de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ribossomos/metabolismo
2.
Mol Cell ; 76(1): 126-137.e7, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31444107

RESUMO

A surprising complexity of ubiquitin signaling has emerged with identification of different ubiquitin chain topologies. However, mechanisms of how the diverse ubiquitin codes control biological processes remain poorly understood. Here, we use quantitative whole-proteome mass spectrometry to identify yeast proteins that are regulated by lysine 11 (K11)-linked ubiquitin chains. The entire Met4 pathway, which links cell proliferation with sulfur amino acid metabolism, was significantly affected by K11 chains and selected for mechanistic studies. Previously, we demonstrated that a K48-linked ubiquitin chain represses the transcription factor Met4. Here, we show that efficient Met4 activation requires a K11-linked topology. Mechanistically, our results propose that the K48 chain binds to a topology-selective tandem ubiquitin binding region in Met4 and competes with binding of the basal transcription machinery to the same region. The change to K11-enriched chain architecture releases this competition and permits binding of the basal transcription complex to activate transcription.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteômica/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Ativação Transcricional , Ubiquitinação , Fatores de Transcrição de Zíper de Leucina Básica/química , Fatores de Transcrição de Zíper de Leucina Básica/genética , Sítios de Ligação , Ligação Competitiva , Cromatografia Líquida , Regulação Fúngica da Expressão Gênica , Lisina , Mutação , Ligação Proteica , Conformação Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Relação Estrutura-Atividade , Espectrometria de Massas em Tandem
3.
Mol Cell Proteomics ; 22(5): 100542, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37024090

RESUMO

The molecular mechanisms and pathways enabling certain individuals to remain cognitively normal despite high levels of Alzheimer's disease (AD) pathology remain incompletely understood. These cognitively normal people with AD pathology are described as preclinical or asymptomatic AD (AsymAD) and appear to exhibit cognitive resilience to the clinical manifestations of AD dementia. Here we present a comprehensive network-based approach from cases clinically and pathologically defined as asymptomatic AD to map resilience-associated pathways and extend mechanistic validation. Multiplex tandem mass tag MS (TMT-MS) proteomic data (n = 7787 proteins) was generated on brain tissue from Brodmann area 6 and Brodmann area 37 (n = 109 cases, n = 218 total samples) and evaluated by consensus weighted gene correlation network analysis. Notably, neuritin (NRN1), a neurotrophic factor previously linked to cognitive resilience, was identified as a hub protein in a module associated with synaptic biology. To validate the function of NRN1 with regard to the neurobiology of AD, we conducted microscopy and physiology experiments in a cellular model of AD. NRN1 provided dendritic spine resilience against amyloid-ß (Aß) and blocked Aß-induced neuronal hyperexcitability in cultured neurons. To better understand the molecular mechanisms of resilience to Aß provided by NRN1, we assessed how exogenous NRN1 alters the proteome by TMT-MS (n = 8238 proteins) of cultured neurons and integrated the results with the AD brain network. This revealed overlapping synapse-related biology that linked NRN1-induced changes in cultured neurons with human pathways associated with cognitive resilience. Collectively, this highlights the utility of integrating the proteome from the human brain and model systems to advance our understanding of resilience-promoting mechanisms and prioritize therapeutic targets that mediate resilience to AD.


Assuntos
Doença de Alzheimer , Neuropeptídeos , Humanos , Doença de Alzheimer/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Cognição/fisiologia , Neuropeptídeos/metabolismo , Proteínas Ligadas por GPI/metabolismo
4.
Mol Cell Proteomics ; 22(6): 100546, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37061046

RESUMO

Different brain cell types play distinct roles in brain development and disease. Molecular characterization of cell-specific mechanisms using cell type-specific approaches at the protein (proteomic) level can provide biological and therapeutic insights. To overcome the barriers of conventional isolation-based methods for cell type-specific proteomics, in vivo proteomic labeling with proximity-dependent biotinylation of cytosolic proteins using biotin ligase TurboID, coupled with mass spectrometry (MS) of labeled proteins, emerged as a powerful strategy for cell type-specific proteomics in the native state of cells without the need for cellular isolation. To complement in vivo proximity labeling approaches, in vitro studies are needed to ensure that cellular proteomes using the TurboID approach are representative of the whole-cell proteome and capture cellular responses to stimuli without disruption of cellular processes. To address this, we generated murine neuroblastoma (N2A) and microglial (BV2) lines stably expressing cytosolic TurboID to biotinylate the cellular proteome for downstream purification and analysis using MS. TurboID-mediated biotinylation captured 59% of BV2 and 65% of N2A proteomes under homeostatic conditions. TurboID labeled endolysosome, translation, vesicle, and signaling proteins in BV2 microglia and synaptic, neuron projection, and microtubule proteins in N2A neurons. TurboID expression and biotinylation minimally impacted homeostatic cellular proteomes of BV2 and N2A cells and did not affect lipopolysaccharide-mediated cytokine production or resting cellular respiration in BV2 cells. MS analysis of the microglial biotin-labeled proteins captured the impact of lipopolysaccharide treatment (>500 differentially abundant proteins) including increased canonical proinflammatory proteins (Il1a, Irg1, and Oasl1) and decreased anti-inflammatory proteins (Arg1 and Mgl2).


Assuntos
Microglia , Proteoma , Animais , Camundongos , Microglia/metabolismo , Proteoma/metabolismo , Biotina/metabolismo , Proteômica/métodos , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Linhagem Celular , Neurônios/metabolismo , Biotinilação
5.
J Neurosci ; 43(20): 3764-3785, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37055180

RESUMO

Proteomic studies using postmortem human brain tissue samples have yielded robust assessments of the aging and neurodegenerative disease(s) proteomes. While these analyses provide lists of molecular alterations in human conditions, like Alzheimer's disease (AD), identifying individual proteins that affect biological processes remains a challenge. To complicate matters, protein targets may be highly understudied and have limited information on their function. To address these hurdles, we sought to establish a blueprint to aid selection and functional validation of targets from proteomic datasets. A cross-platform pipeline was engineered to focus on synaptic processes in the entorhinal cortex (EC) of human patients, including controls, preclinical AD, and AD cases. Label-free quantification mass spectrometry (MS) data (n = 2260 proteins) was generated on synaptosome fractionated tissue from Brodmann area 28 (BA28; n = 58 samples). In parallel, dendritic spine density and morphology was measured in the same individuals. Weighted gene co-expression network analysis was used to construct a network of protein co-expression modules that were correlated with dendritic spine metrics. Module-trait correlations were used to guide unbiased selection of Twinfilin-2 (TWF2), which was the top hub protein of a module that positively correlated with thin spine length. Using CRISPR-dCas9 activation strategies, we demonstrated that boosting endogenous TWF2 protein levels in primary hippocampal neurons increased thin spine length, thus providing experimental validation for the human network analysis. Collectively, this study describes alterations in dendritic spine density and morphology as well as synaptic proteins and phosphorylated tau from the entorhinal cortex of preclinical and advanced stage AD patients.SIGNIFICANCE STATEMENT Proteomic studies can yield vast lists of molecules that are altered under various experimental or disease conditions. Here, we provide a blueprint to facilitate mechanistic validation of protein targets from human brain proteomic datasets. We conducted a proteomic analysis of human entorhinal cortex (EC) samples spanning cognitively normal and Alzheimer's disease (AD) cases with a comparison of dendritic spine morphology in the same samples. Network integration of proteomics with dendritic spine measurements allowed for unbiased discovery of Twinfilin-2 (TWF2) as a regulator of dendritic spine length. A proof-of-concept experiment in cultured neurons demonstrated that altering Twinfilin-2 protein level induced corresponding changes in dendritic spine length, thus providing experimental validation for the computational framework.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Córtex Entorrinal/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Espinhas Dendríticas/metabolismo , Proteômica
6.
Am J Hum Genet ; 108(3): 400-410, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33571421

RESUMO

We generated an online brain pQTL resource for 7,376 proteins through the analysis of genetic and proteomic data derived from post-mortem samples of the dorsolateral prefrontal cortex of 330 older adults. The identified pQTLs tend to be non-synonymous variation, are over-represented among variants associated with brain diseases, and replicate well (77%) in an independent brain dataset. Comparison to a large study of brain eQTLs revealed that about 75% of pQTLs are also eQTLs. In contrast, about 40% of eQTLs were identified as pQTLs. These results are consistent with lower pQTL mapping power and greater evolutionary constraint on protein abundance. The latter is additionally supported by observations of pQTLs with large effects' tending to be rare, deleterious, and associated with proteins that have evidence for fewer protein-protein interactions. Mediation analyses using matched transcriptomic and proteomic data provided additional evidence that pQTL effects are often, but not always, mediated by mRNA. Specifically, we identified roughly 1.6 times more mRNA-mediated pQTLs than mRNA-independent pQTLs (550 versus 341). Our pQTL resource provides insight into the functional consequences of genetic variation in the human brain and a basis for novel investigations of genetics and disease.


Assuntos
Encéfalo/metabolismo , Proteoma/genética , Locos de Características Quantitativas/genética , Transcriptoma/genética , Autopsia , Feminino , Regulação da Expressão Gênica/genética , Variação Genética/genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Proteômica , RNA Mensageiro/genética
7.
J Neuroinflammation ; 21(1): 156, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872143

RESUMO

Repetitive mild traumatic brain injuries (rmTBI) sustained within a window of vulnerability can result in long term cognitive deficits, depression, and eventual neurodegeneration associated with tau pathology, amyloid beta (Aß) plaques, gliosis, and neuronal and functional loss. However, a comprehensive study relating acute changes in immune signaling and glial reactivity to neuronal changes and pathological markers after single and repetitive mTBIs is currently lacking. In the current study, we addressed the question of how repeated injuries affect the brain neuroimmune response in the acute phase of injury (< 24 h) by exposing the 3xTg-AD mouse model of tau and Aß pathology to successive (1x-5x) once-daily weight drop closed-head injuries and quantifying immune markers, pathological markers, and transcriptional profiles at 30 min, 4 h, and 24 h after each injury. We used young adult 2-4 month old 3xTg-AD mice to model the effects of rmTBI in the absence of significant tau and Aß pathology. We identified pronounced sexual dimorphism in this model, with females eliciting more diverse changes after injury compared to males. Specifically, females showed: (1) a single injury caused a decrease in neuron-enriched genes inversely correlated with inflammatory protein expression and an increase in AD-related genes within 24 h, (2) each injury significantly increased a group of cortical cytokines (IL-1α, IL-1ß, IL-2, IL-9, IL-13, IL-17, KC) and MAPK phospho-proteins (phospho-Atf2, phospho-Mek1), several of which co-labeled with neurons and correlated with phospho-tau, and (3) repetitive injury caused increased expression of genes associated with astrocyte reactivity and macrophage-associated immune function. Collectively our data suggest that neurons respond to a single injury within 24 h, while other cell types, including astrocytes, transition to inflammatory phenotypes within days of repetitive injury.


Assuntos
Concussão Encefálica , Camundongos Transgênicos , Animais , Camundongos , Concussão Encefálica/patologia , Concussão Encefálica/imunologia , Concussão Encefálica/metabolismo , Concussão Encefálica/complicações , Feminino , Masculino , Modelos Animais de Doenças , Doença de Alzheimer/patologia , Doença de Alzheimer/imunologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Proteínas tau/metabolismo , Proteínas tau/genética , Neuroimunomodulação/fisiologia , Camundongos Endogâmicos C57BL , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/imunologia , Caracteres Sexuais
8.
Acta Neuropathol ; 147(1): 29, 2024 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-38308693

RESUMO

The aggregation, mislocalization, and phosphorylation of TDP-43 are pathologic hallmarks of several neurodegenerative diseases and provide a defining criterion for the neuropathologic diagnosis of Limbic-predominant Age-related TDP-43 Encephalopathy (LATE). LATE neuropathologic changes (LATE-NC) are often comorbid with other neurodegenerative pathologies including Alzheimer's disease neuropathologic changes (ADNC). We examined whether TDP-43 regulated cryptic exons accumulate in the hippocampus of neuropathologically confirmed LATE-NC cases. We found that several cryptic RNAs are robustly expressed in LATE-NC cases with or without comorbid ADNC and correlate with pTDP-43 abundance; however, the accumulation of cryptic RNAs is more robust in LATE-NC with comorbid ADNC. Additionally, cryptic RNAs can robustly distinguish LATE-NC from healthy controls and AD cases. These findings expand our current understanding and provide novel potential biomarkers for LATE pathogenesis.


Assuntos
Doença de Alzheimer , Demência , Proteinopatias TDP-43 , Humanos , Encéfalo/patologia , Proteinopatias TDP-43/patologia , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Envelhecimento/genética , Envelhecimento/patologia , Proteínas de Ligação a DNA/metabolismo , Éxons
9.
Brain ; 146(4): 1561-1579, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36059072

RESUMO

Bridging integrator 1 (BIN1) is the second most prevalent genetic risk factor identified by genome-wide association studies (GWAS) for late-onset Alzheimer's disease. BIN1 encodes an adaptor protein that regulates membrane dynamics in the context of endocytosis and neurotransmitter vesicle release. In vitro evidence suggests that BIN1 can directly bind to tau in the cytosol. In addition, BIN1's function limits extracellular tau seed uptake by endocytosis and subsequent propagation as well as influences tau release through exosomes. However, the in vivo roles of BIN1 in tau pathogenesis and tauopathy-mediated neurodegeneration remain uncharacterized. We generated conditional knockout mice with a selective loss of Bin1 expression in the forebrain excitatory neurons and oligodendrocytes in P301S human tau transgenic background (line PS19). PS19 mice develop age-dependent tau neuropathology and motor deficits and are commonly used to study Alzheimer's disease tau pathophysiology. The severity of motor deficits and neuropathology was compared between experimental and control mice that differ with respect to forebrain BIN1 expression. BIN1's involvement in tau pathology and neuroinflammation was quantified by biochemical methods and immunostaining. Transcriptome changes were profiled by RNA-sequencing analysis to gain molecular insights. The loss of forebrain BIN1 expression in PS19 mice exacerbated tau pathology in the somatosensory cortex, thalamus, spinal cord and sciatic nerve, accelerated disease progression and caused early death. Intriguingly, the loss of BIN1 also mitigated tau neuropathology in select regions, including the hippocampus, entorhinal/piriform cortex, and amygdala, thus attenuating hippocampal synapse loss, neuronal death, neuroinflammation and brain atrophy. At the molecular level, the loss of forebrain BIN1 elicited complex neuronal and non-neuronal transcriptomic changes, including altered neuroinflammatory gene expression, concomitant with an impaired microglial transition towards the disease-associated microglial phenotype. These results provide crucial new information on in vivo BIN1 function in the context of tau pathogenesis. We conclude that forebrain neuronal BIN1 expression promotes hippocampal tau pathogenesis and neuroinflammation. Our findings highlight an exciting region specificity in neuronal BIN1 regulation of tau pathogenesis and reveal cell-autonomous and non-cell-autonomous mechanisms involved in BIN1 modulation of tau neuropathology.


Assuntos
Doença de Alzheimer , Tauopatias , Camundongos , Humanos , Animais , Doença de Alzheimer/patologia , Proteínas tau/metabolismo , Doenças Neuroinflamatórias , Camundongos Transgênicos , Estudo de Associação Genômica Ampla , Tauopatias/patologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Camundongos Knockout , Hipocampo/metabolismo , Modelos Animais de Doenças , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas do Tecido Nervoso/genética
10.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33649184

RESUMO

Kv1.3 potassium channels, expressed by proinflammatory central nervous system mononuclear phagocytes (CNS-MPs), are promising therapeutic targets for modulating neuroinflammation in Alzheimer's disease (AD). The molecular characteristics of Kv1.3-high CNS-MPs and their cellular origin from microglia or CNS-infiltrating monocytes are unclear. While Kv1.3 blockade reduces amyloid beta (Aß) burden in mouse models, the downstream immune effects on molecular profiles of CNS-MPs remain unknown. We show that functional Kv1.3 channels are selectively expressed by a subset of CD11b+CD45+ CNS-MPs acutely isolated from an Aß mouse model (5xFAD) as well as fresh postmortem human AD brain. Transcriptomic profiling of purified CD11b+Kv1.3+ CNS-MPs, CD11b+CD45int Kv1.3neg microglia, and peripheral monocytes from 5xFAD mice revealed that Kv1.3-high CNS-MPs highly express canonical microglial markers (Tmem119, P2ry12) and are distinct from peripheral Ly6chigh/Ly6clow monocytes. Unlike homeostatic microglia, Kv1.3-high CNS-MPs express relatively lower levels of homeostatic genes, higher levels of CD11c, and increased levels of glutamatergic transcripts, potentially representing phagocytic uptake of neuronal elements. Using irradiation bone marrow CD45.1/CD45.2 chimerism in 5xFAD mice, we show that Kv1.3+ CNS-MPs originate from microglia and not blood-derived monocytes. We show that Kv1.3 channels regulate membrane potential and early signaling events in microglia. Finally, in vivo blockade of Kv1.3 channels in 5xFAD mice by ShK-223 reduced Aß burden, increased CD11c+ CNS-MPs, and expression of phagocytic genes while suppressing proinflammatory genes (IL1b). Our results confirm the microglial origin and identify unique molecular features of Kv1.3-expressing CNS-MPs. In addition, we provide evidence for CNS immunomodulation by Kv1.3 blockers in AD mouse models resulting in a prophagocytic phenotype.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Canal de Potássio Kv1.3/metabolismo , Microglia/metabolismo , Células Mieloides/metabolismo , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Humanos , Canal de Potássio Kv1.3/genética , Masculino , Camundongos
11.
Alzheimers Dement ; 20(6): 4043-4065, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38713744

RESUMO

INTRODUCTION: Cerebrovascular dysfunction is a pathological hallmark of Alzheimer's disease (AD). Nevertheless, detecting cerebrovascular changes within bulk tissues has limited our ability to characterize proteomic alterations from less abundant cell types. METHODS: We conducted quantitative proteomics on bulk brain tissues and isolated cerebrovasculature from the same individuals, encompassing control (N = 28), progressive supranuclear palsy (PSP) (N = 18), and AD (N = 21) cases. RESULTS: Protein co-expression network analysis identified unique cerebrovascular modules significantly correlated with amyloid plaques, cerebrovascular amyloid angiopathy (CAA), and/or tau pathology. The protein products within AD genetic risk loci were concentrated within cerebrovascular modules. The overlap between differentially abundant proteins in AD cerebrospinal fluid (CSF) and plasma with cerebrovascular network highlighted a significant increase of matrisome proteins, SMOC1 and SMOC2, in CSF, plasma, and brain. DISCUSSION: These findings enhance our understanding of cerebrovascular deficits in AD, shedding light on potential biomarkers associated with CAA and vascular dysfunction in neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Biomarcadores , Proteômica , Humanos , Biomarcadores/líquido cefalorraquidiano , Biomarcadores/sangue , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/sangue , Doença de Alzheimer/genética , Masculino , Idoso , Feminino , Encéfalo/metabolismo , Tauopatias/líquido cefalorraquidiano , Tauopatias/sangue , Paralisia Supranuclear Progressiva/líquido cefalorraquidiano , Paralisia Supranuclear Progressiva/sangue , Angiopatia Amiloide Cerebral/líquido cefalorraquidiano , Angiopatia Amiloide Cerebral/genética , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Proteínas tau/líquido cefalorraquidiano
12.
J Neurochem ; 165(2): 149-161, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36892419

RESUMO

The observation that aging is regulated by microRNAs (miRNA) and at the same time represents the greatest risk factor for Alzheimer's disease (AD), prompted us to examine the circulating miRNA network in AD beyond aging. We here show that plasma miRNAs in aging are downregulated and predicted to be preferentially targeted to the extracellular vesicle (EV) content. In AD, miRNAs are further downregulated, display altered proportions of motifs relevant to their loading into EVs and secretion propensity, and are forecast to be found exclusively in EVs. The circulating miRNA network in AD, therefore, reflects pathological exacerbation of the aging process whereby physiological suppression of AD pathology by miRNAs becomes insufficient.


Assuntos
Doença de Alzheimer , Vesículas Extracelulares , MicroRNAs , Humanos , MicroRNAs/genética , Doença de Alzheimer/genética , Envelhecimento/genética
13.
Neurobiol Dis ; 186: 106286, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37689213

RESUMO

Cognitive impairment in the elderly features complex molecular pathophysiology extending beyond the hallmark pathologies of traditional disease classification. Molecular subtyping using large-scale -omic strategies can help resolve this biological heterogeneity. Using quantitative mass spectrometry, we measured ∼8000 proteins across >600 dorsolateral prefrontal cortex tissues with clinical diagnoses of no cognitive impairment (NCI), mild cognitive impairment (MCI), and Alzheimer's disease (AD) dementia. Unbiased classification of MCI and AD cases based on individual proteomic profiles resolved three classes with expression differences across numerous cell types and biological ontologies. Two classes displayed molecular signatures atypical of AD neurodegeneration, such as elevated synaptic and decreased inflammatory markers. In one class, these atypical proteomic features were associated with clinical and pathological hallmarks of cognitive resilience. We were able to replicate these classes and their clinicopathological phenotypes across two additional tissue cohorts. These results promise to better define the molecular heterogeneity of cognitive impairment and meaningfully impact its diagnostic and therapeutic precision.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Idoso , Humanos , Proteoma , Proteômica , Encéfalo
14.
Brain ; 145(6): 1924-1938, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34919634

RESUMO

The locus coeruleus is the initial site of Alzheimer's disease neuropathology, with hyperphosphorylated Tau appearing in early adulthood followed by neurodegeneration in dementia. Locus coeruleus dysfunction contributes to Alzheimer's pathobiology in experimental models, which can be rescued by increasing norepinephrine transmission. To test norepinephrine augmentation as a potential disease-modifying therapy, we performed a biomarker-driven phase II trial of atomoxetine, a clinically-approved norepinephrine transporter inhibitor, in subjects with mild cognitive impairment due to Alzheimer's disease. The design was a single-centre, 12-month double-blind crossover trial. Thirty-nine participants with mild cognitive impairment and biomarker evidence of Alzheimer's disease were randomized to atomoxetine or placebo treatment. Assessments were collected at baseline, 6- (crossover) and 12-months (completer). Target engagement was assessed by CSF and plasma measures of norepinephrine and metabolites. Prespecified primary outcomes were CSF levels of IL1α and TECK. Secondary/exploratory outcomes included clinical measures, CSF analyses of amyloid-ß42, Tau, and pTau181, mass spectrometry proteomics and immune-based targeted inflammation-related cytokines, as well as brain imaging with MRI and fluorodeoxyglucose-PET. Baseline demographic and clinical measures were similar across trial arms. Dropout rates were 5.1% for atomoxetine and 2.7% for placebo, with no significant differences in adverse events. Atomoxetine robustly increased plasma and CSF norepinephrine levels. IL-1α and TECK were not measurable in most samples. There were no significant treatment effects on cognition and clinical outcomes, as expected given the short trial duration. Atomoxetine was associated with a significant reduction in CSF Tau and pTau181 compared to placebo, but not associated with change in amyloid-ß42. Atomoxetine treatment also significantly altered CSF abundances of protein panels linked to brain pathophysiologies, including synaptic, metabolism and glial immunity, as well as inflammation-related CDCP1, CD244, TWEAK and osteoprotegerin proteins. Treatment was also associated with significantly increased brain-derived neurotrophic factor and reduced triglycerides in plasma. Resting state functional MRI showed significantly increased inter-network connectivity due to atomoxetine between the insula and the hippocampus. Fluorodeoxyglucose-PET showed atomoxetine-associated increased uptake in hippocampus, parahippocampal gyrus, middle temporal pole, inferior temporal gyrus and fusiform gyrus, with carry-over effects 6 months after treatment. In summary, atomoxetine treatment was safe, well tolerated and achieved target engagement in prodromal Alzheimer's disease. Atomoxetine significantly reduced CSF Tau and pTau, normalized CSF protein biomarker panels linked to synaptic function, brain metabolism and glial immunity, and increased brain activity and metabolism in key temporal lobe circuits. Further study of atomoxetine is warranted for repurposing the drug to slow Alzheimer's disease progression.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Adolescente , Adulto , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Antígenos de Neoplasias , Cloridrato de Atomoxetina/uso terapêutico , Biomarcadores , Moléculas de Adesão Celular , Disfunção Cognitiva/patologia , Estudos Cross-Over , Método Duplo-Cego , Reposicionamento de Medicamentos , Humanos , Inflamação , Pessoa de Meia-Idade , Neuroproteção , Norepinefrina , Proteínas tau
15.
Alzheimers Dement ; 19(8): 3537-3554, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36825691

RESUMO

The choroid plexus (ChP) produces and is bathed in the cerebrospinal fluid (CSF), which in aging and Alzheimer's disease (AD) shows extensive proteomic alterations including evidence of inflammation. Considering inflammation hampers functions of the involved tissues, the CSF abnormalities reported in these conditions are suggestive of ChP injury. Indeed, several studies document ChP damage in aging and AD, which nevertheless remains to be systematically characterized. We here report that the changes elicited in the CSF by AD are consistent with a perturbed aging process and accompanied by aberrant accumulation of inflammatory signals and metabolically active proteins in the ChP. Magnetic resonance imaging (MRI) imaging shows that these molecular aberrancies correspond to significant remodeling of ChP in AD, which correlates with aging and cognitive decline. Collectively, our preliminary post-mortem and in vivo findings reveal a repertoire of ChP pathologies indicative of its dysfunction and involvement in the pathogenesis of AD. HIGHLIGHTS: Cerebrospinal fluid changes associated with aging are perturbed in Alzheimer's disease Paradoxically, in Alzheimer's disease, the choroid plexus exhibits increased cytokine levels without evidence of inflammatory activation or infiltrates In Alzheimer's disease, increased choroid plexus volumes correlate with age and cognitive performance.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Plexo Corióideo/metabolismo , Plexo Corióideo/patologia , Proteômica , Envelhecimento , Inflamação
16.
J Biol Chem ; 297(5): 101306, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34673031

RESUMO

Posttranslational modifications (PTMs) such as phosphorylation of RNA-binding proteins (RBPs) regulate several critical steps in RNA metabolism, including spliceosome assembly, alternative splicing, and mRNA export. Notably, serine-/arginine- (SR)-rich RBPs are densely phosphorylated compared with the remainder of the proteome. Previously, we showed that dephosphorylation of the splicing factor SRSF2 regulated increased interactions with similar arginine-rich RBPs U1-70K and LUC7L3. However, the large-scale functional and structural impact of these modifications on RBPs remains unclear. In this work, we dephosphorylated nuclear extracts using phosphatase in vitro and analyzed equal amounts of detergent-soluble and -insoluble fractions by mass-spectrometry-based proteomics. Correlation network analysis resolved 27 distinct modules of differentially soluble nucleoplasm proteins. We found classes of arginine-rich RBPs that decrease in solubility following dephosphorylation and enrich the insoluble pelleted fraction, including the SR protein family and the SR-like LUC7L RBP family. Importantly, increased insolubility was not observed across broad classes of RBPs. We determined that phosphorylation regulated SRSF2 structure, as dephosphorylated SRSF2 formed high-molecular-weight oligomeric species in vitro. Reciprocally, phosphorylation of SRSF2 by serine/arginine protein kinase 2 (SRPK2) in vitro decreased high-molecular-weight SRSF2 species formation. Furthermore, upon pharmacological inhibition of SRPKs in mammalian cells, we observed SRSF2 cytoplasmic mislocalization and increased formation of cytoplasmic granules as well as cytoplasmic tubular structures that associated with microtubules by immunocytochemical staining. Collectively, these findings demonstrate that phosphorylation may be a critical modification that prevents arginine-rich RBP insolubility and oligomerization.


Assuntos
Multimerização Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Processamento de Serina-Arginina/metabolismo , Células HEK293 , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Estabilidade Proteica , Ribonucleoproteína Nuclear Pequena U1/genética , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Fatores de Processamento de Serina-Arginina/genética
17.
J Biol Chem ; 296: 100760, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33965374

RESUMO

One of the defining pathological features of Alzheimer's disease (AD) is the deposition of neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau in the brain. Aberrant activation of kinases in AD has been suggested to enhance phosphorylation and toxicity of tau, making the responsible tau kinases attractive therapeutic targets. The full complement of tau-interacting kinases in AD brain and their activity in disease remains incompletely defined. Here, immunoaffinity enrichment coupled with mass spectrometry (MS) identified TANK-binding kinase 1 (TBK1) as a tau-interacting partner in human AD cortical brain tissues. We validated this interaction in human AD, familial frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) caused by mutations in MAPT (R406W & P301L) and corticobasal degeneration (CBD) postmortem brain tissues as well as human cell lines. Further, we document increased TBK1 activation in both AD and FTDP-17 and map TBK1 phosphorylation sites on tau based on in vitro kinase assays coupled to MS. Lastly, in a Drosophila tauopathy model, activating expression of a conserved TBK1 ortholog triggers tau hyperphosphorylation and enhanced neurodegeneration, whereas knockdown had the reciprocal effect, suppressing tau toxicity. Collectively, our findings suggest that increased TBK1 activation may promote tau hyperphosphorylation and neuronal loss in AD and related tauopathies.


Assuntos
Doença de Alzheimer/metabolismo , Mapas de Interação de Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Animais , Drosophila , Feminino , Células HEK293 , Humanos , Masculino , Tauopatias/patologia
18.
BMC Med ; 20(1): 380, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36336678

RESUMO

BACKGROUND: Language deficits frequently occur during the prodromal stages of Alzheimer's disease (AD). However, the characteristics of linguistic impairment and its underlying mechanism(s) remain to be explored for the early diagnosis of AD. METHODS: The percentage of silence duration (PSD) of 324 subjects was analyzed, including patients with AD, amnestic mild cognitive impairment (aMCI), and normal controls (NC) recruited from the China multi-center cohort, and the diagnostic efficiency was replicated from the Pitt center cohort. Furthermore, the specific language network involved in the fragmented speech was analyzed using task-based functional magnetic resonance. RESULTS: In the China cohort, PSD increased significantly in aMCI and AD patients. The area under the curve of the receiver operating characteristic curves is 0.74, 0.84, and 0.80 in the classification of NC/aMCI, NC/AD, and NC/aMCI+AD. In the Pitt center cohort, PSD was verified as a reliable diagnosis biomarker to differentiate mild AD patients from NC. Next, in response to fluency tasks, clusters in the bilateral inferior frontal gyrus, precentral gyrus, left inferior temporal gyrus, and inferior parietal lobule deactivated markedly in the aMCI/AD group (cluster-level P < 0.05, family-wise error (FWE) corrected). In the patient group (AD+aMCI), higher activation level of the right pars triangularis was associated with higher PSD in in both semantic and phonemic tasks. CONCLUSIONS: PSD is a reliable diagnostic biomarker for the early stage of AD and aMCI. At as early as aMCI phase, the brain response to fluency tasks was inhibited markedly, partly explaining why PSD was elevated simultaneously.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Testes Neuropsicológicos , Estudos Transversais , Fala , Disfunção Cognitiva/diagnóstico , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/patologia , Encéfalo/patologia , Imageamento por Ressonância Magnética , Estudos de Coortes , Biomarcadores
19.
Alzheimers Dement ; 18(5): 924-933, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34482613

RESUMO

INTRODUCTION: We investigated the association between Alzheimer's disease (AD) and the risk of cancer in the Chinese population. METHODS: In this retrospective cohort study, multivariate Cox proportional hazard regression analysis was used to determine the correlation between AD and the risk of various cancers, as shown by hazard ratios (HRs) with 95% confidence intervals (CIs). RESULTS: Of 8097 AD patients, the HR for all subsequent cancers was 0.822 (95% CI, 0.728-0.928; P = .002). Among them, three specific cancers were associated with AD: lung cancer (HR, 0.656; 95% CI, 0.494- 0.871; P = .004), prostate and testicular cancer (HR, 0.414; 95% CI, 0.202-0.847; P = .016), and lymphoma (HR, 2.202; 95% CI, 1.005-4.826; P = .049). CONCLUSION: Patients with AD might have a lower chance of developing several cancers, including lung cancer and prostate and testicular cancer. Meanwhile, a positive association between AD and a higher incident rate of lymphoma was observed.


Assuntos
Doença de Alzheimer , Neoplasias Pulmonares , Neoplasias Testiculares , Doença de Alzheimer/epidemiologia , China/epidemiologia , Humanos , Masculino , Neoplasias Embrionárias de Células Germinativas , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Fatores de Risco
20.
J Proteome Res ; 20(2): 1328-1340, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33443437

RESUMO

Proteomics approaches designed to catalogue all open reading frames (ORFs) under a defined set of growth conditions of an organism have flourished in recent years. However, no proteome has been sequenced completely so far. Here, we generate the largest yeast proteome data set, including 5610 identified proteins, using a strategy based on optimized sample preparation and high-resolution mass spectrometry. Among the 5610 identified proteins, 94.1% are core proteins, which achieves near-complete coverage of the yeast ORFs. Comprehensive analysis of missing proteins showed that proteins are missed mainly due to physical properties. A review of protein abundance shows that our proteome encompasses a uniquely broad dynamic range. Additionally, these values highly correlate with mRNA abundance, implying a high level of accuracy, sensitivity, and precision. We present examples of how the data could be used, including reannotating gene localization, providing expression evidence of pseudogenes. Our near-complete yeast proteome data set will be a useful and important resource for further systematic studies.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Espectrometria de Massas , Proteoma/genética , Proteômica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA