Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Phys Chem Chem Phys ; 26(30): 20709-20716, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39042105

RESUMO

Form III of linezolid was prepared by heating the commercial form above 150 °C and subsequently analyzed upon cooling down to -160 °C, by low- and high-frequency Raman spectroscopy, differential scanning calorimetry and powder X-ray diffraction (PXRD). It was observed that form III was preserved down to 0 °C. At lower temperatures a soft mode was clearly detected by low-frequency Raman spectroscopy associated with the detection of additional Raman bands distinctive of additional intermolecular H-bond interactions. Raman spectroscopy investigations performed in a wide frequency range revealed a continuous transformation characterized by both displacive and order-disorder signatures. By contrast, PXRD highlighted the absence of symmetry breaking, Bragg peaks being still indexed in the same unit cell from room temperature down to -160 °C. Additionally, a significant broadening of Bragg peaks was observed with decreasing temperature interpreted as being a consequence of a distribution of frozen molecular conformations.

2.
Phys Chem Chem Phys ; 24(44): 27023-27030, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-35946565

RESUMO

L-Leucine is an essential amino acid which has been focusing a lot of investigations on its phase transition sequence for more than fifty years. Combining Raman spectroscopy and X-ray diffraction experiments provides a new interpretation of the second order phase transition extending between 270 and 360 K as a displacive incommensurate-normal phase transition. A soft mode was clearly detected from low-frequency Raman investigations which exhibits the temperature dependence (A·(TC-T)1/2) typical of the temperature behavior of the amplitudon, an excitation specific to incommensurate phases. Simultaneously to the softening of the amplitudon, several very weakly intense X-ray reflections vanish upon heating at 360 K, and thereby are interpreted as satellite reflections. This incommensurability was described as resulting from the freezing of thermally activated hydrophobic side-chain rotations upon cooling in disordered orientations. Raman investigations were also performed on the isomeric amino acid L-norleucine previously identified as undergoing a normal-incommensurate phase transition around 200 K. Comparison of both studies suggests that the temperature behavior of thermally activated local motions generates lattice instabilities. Loss of periodicity can result from the freezing of rotations of molecular moieties in disordered orientations, or from the enhancement of anharmonicity of these rotations. This could be a general phenomenon in hydrophobic amino acids with direct consequences on their applications in the life science area.


Assuntos
Aminoácidos , Leucina , Transição de Fase , Difração de Raios X , Interações Hidrofóbicas e Hidrofílicas
3.
J Chem Phys ; 156(3): 034501, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35065577

RESUMO

Raman spectroscopy investigations on L-methionine (L-Met) performed in a large temperature range (170-420 K) and in a wide spectral window (5-3600 cm-1) have revealed an extended disordering mechanism triggered by thermally activated motions of the terminal side-chain atoms, from 250 up to 390 K. This very progressive disordering process is characterized by two thermodynamic features, the first corresponding to a broad endotherm (250 → 310 K) marking the beginning of the process, while the second ending the disordering transformation is a sharp endothermic peak at 390 K. These thermodynamic events are correlated with the softening of lattice vibrations and the increase of the quasielastic scattering, considered as the signatures of displacive phase transitions. The amorphous-like band-shape of the low-frequency Raman spectrum collected above 390 K, resulting from the strong anharmonicity of local motions, is contrasting with the detection of additional Bragg peaks above 390 K by x-ray diffraction, consistent with the Cp jump accompanying the endothermic peak. These observations suggest that L-Met is progressively dynamically disordered adopting additional configurations in the crystalline lattice through rotations of CH3 and the side-chain flexibility not clearly detected by x-ray diffraction. These results should be crucial for considering the stability of dried proteins composed of methionine residues.

4.
Mol Pharm ; 18(3): 898-914, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33461296

RESUMO

Aiming to evaluate how the release profile of naproxen (nap) is influenced by its physical state, molecular mobility, and distribution in the host, this pharmaceutical drug was loaded in three different mesoporous silicas differing in their architecture and surface composition. Unmodified and partially silylated MCM-41 matrices, respectively MCM-41 and MCM-41sil, and a biphenylene-bridged periodic mesoporous organic matrix, PMOBph, were synthetized and used as drug carriers, having comparable pore sizes (∼3 nm) and loading percentages (∼30% w/w). The loaded guest was investigated by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, powder X-ray diffraction (XRD), differential scanning calorimetry (DSC), and dielectric relaxation spectroscopy (DRS). DSC and XRD confirmed amorphization of a nap fraction incorporated inside the pores. A narrower glass transition was detected for PMOBph_nap, taken as an indication of the impact of host ordering, which also hinders the guest molecular mobility inside the pores as probed by DRS. While the PMOBph matrix is highly hydrophobic, the unmodified MCM-41 readily adsorbs water, accelerating the nap relaxation rate in the respective composite. In the dehydrated state, the faster dynamics was found for the silylated matrix since guest-host hydrogen bond interactions were inhibited to some extent by methylation. Nevertheless, in all the prepared composites, bulk-like crystalline drug deposits outside pores in a greater extent in PMOBph_nap. The DRS measurements analyzed in terms of conductivity show that, upon melting, nap easily migrates into pores in MCM-41-based composites, while it stays in the outer surface in the ordered PMOBph, determining a faster nap delivery from the latter matrix. On the other side, the mobility enhancement in the hydrated state controls the drug delivery in the unmodified MCM-41 matrix vs the silylated one. Therefore, DRS proved to be a suitable technique to disclose the influence of the ordering of the host surface and its chemical modification on the guest behavior, and, through conductivity depletion, it provides a mean to monitor the guest entrance inside the pores, easily followed even by untrained spectroscopists.


Assuntos
Naproxeno/química , Dióxido de Silício/química , Adsorção/efeitos dos fármacos , Varredura Diferencial de Calorimetria , Cristalização/métodos , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Tamanho da Partícula , Porosidade , Solubilidade/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Água/química , Difração de Raios X/métodos
5.
Mol Pharm ; 14(9): 3164-3177, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28836790

RESUMO

The amorphization of the readily crystallizable therapeutic ingredient and food additive, menthol, was successfully achieved by inclusion of neat menthol in mesoporous silica matrixes of 3.2 and 5.9 nm size pores. Menthol amorphization was confirmed by the calorimetric detection of a glass transition. The respective glass transition temperature, Tg = -54.3 °C, is in good agreement with the one predicted by the composition dependence of the Tg values determined for menthol:flurbiprofen therapeutic deep eutectic solvents (THEDESs). Nonisothermal crystallization was never observed for neat menthol loaded into silica hosts, which can indicate that menthol rests as a full amorphous/supercooled material inside the pores of the silica matrixes. Menthol mobility was probed by dielectric relaxation spectroscopy, which allowed to identify two relaxation processes in both pore sizes: a faster one associated with mobility of neat-like menthol molecules (α-process), and a slower, dominant one due to the hindered mobility of menthol molecules adsorbed at the inner pore walls (S-process). The fraction of molecular population governing the α-process is greater in the higher (5.9 nm) pore size matrix, although in both cases the S-process is more intense than the α-process. A dielectric glass transition temperature was estimated for each α (Tg,dielc(α)) and S (Tg,dielc(S)) molecular population from the temperature dependence of the relaxation times to 100 s. While Tg,dielc(α) agrees better with the value obtained from the linearization of the Fox equation assuming ideal behavior of the menthol:flurbiprofen THEDES, Tg,dielc(S) is close to the value determined by calorimetry for the silica composites due to a dominance of the adsorbed population inside the pores. Nevertheless, the greater fraction of more mobile bulk-like molecules in the 5.9 nm pore size matrix seems to determine the faster drug release at initial times relative to the 3.2 nm composite. However, the latter inhibits crystallization inside pores since its dimensions are inferior to menthol critical size for nucleation. This points to a suitability of these composites as drug delivery systems in which the drug release profile can be controlled by tuning the host pore size.


Assuntos
Mentol/química , Dióxido de Silício/química , Varredura Diferencial de Calorimetria , Cristalização , Flurbiprofeno/química , Solventes/química , Temperatura de Transição
6.
Mol Pharm ; 13(11): 3891-3902, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27618666

RESUMO

In this study, the suitability of high-energy ball milling was investigated with the aim to vitrify tadalafil (TD) and improve its bioavailability. To achieve this goal, pure TD as well as binary mixtures composed of the drug and Soluplus (SL) were coprocessed by high-energy ball milling. Modulated differential scanning calorimetry (MDSC) and X-ray powder diffraction (XRD) demonstrated that after such coprocessing, the crystalline form of TD was transformed into an amorphous form. The presence of a single glass transition (Tg) for all the comilled formulations indicated that TD was dispersed into SL at the molecular level, forming amorphous molecular alloys, regardless of the drug concentration. The high values of Tg determined for amorphous formulations, ranging from 70 to 147 °C, foreshow their high stability during storage at room temperature, which was verified by XRD and MDSC studies. The stabilizing effect of SL on the amorphous form of TD in comilled formulations was confirmed. Dissolution tests showed immediate drug release with sustained supersaturation in either simulated gastric fluid of pH 1.2 or in phosphate buffer of pH 7.2. The beneficial effect of both amorphization and coamorphization on the bioavailability of TD was found. In comparison to aqueous suspension, the relative bioavailability of TD was only 11% for its crystalline form and 53% for the crystalline physical mixture, whereas the bioavailability of milled amorphous TD and the comilled solid dispersion was 128% and 289%, respectively. Thus, the results provide evidence that not only the presence of polymeric surfactant but also the vitrification of TD is necessary to improve bioavailability.


Assuntos
Tadalafila/química , Disponibilidade Biológica , Varredura Diferencial de Calorimetria , Microscopia Eletrônica de Varredura , Difração de Raios X
7.
Drug Dev Ind Pharm ; 41(5): 838-50, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-24766587

RESUMO

HPMC-, PVPVA- and PVP-based microparticles loaded with 30% ketoprofen were prepared by spray drying suspensions or solutions in various water:ethanol blends. The inlet temperature, drying gas and feed flow rates were varied. The resulting differences in the ketoprofen release rates in 0.1 M HCl could be explained based on X-ray diffraction, mDSC, SEM and particle size analysis. Importantly, long term stable drug release could be provided, being much faster than: (i) drug release from a commercial reference product, (ii) the respective physical drug:polymer mixtures, as well as (iii) the dissolution of ketoprofen powder as received. In addition, highly supersaturated release media were obtained, which did not show any sign for re-crystallization during the observation period. Surprisingly, spraying suspensions resulted in larger microparticles exhibiting faster drug release compared to spraying solutions, which resulted in smaller particles exhibiting slower drug release. These effects could be explained based on the physico-chemical characteristics of the systems.


Assuntos
Excipientes/química , Cetoprofeno/administração & dosagem , Polímeros/química , Varredura Diferencial de Calorimetria , Química Farmacêutica/métodos , Cristalização , Liberação Controlada de Fármacos , Derivados da Hipromelose/química , Cetoprofeno/química , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Transição de Fase , Povidona/análogos & derivados , Povidona/química , Solubilidade , Temperatura , Difração de Raios X
8.
Pharmaceutics ; 16(8)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39204416

RESUMO

This research work dives into the complexity of hot-melt extrusion (HME) and its influence on drug stability, focusing on solid dispersions containing 30% of glibenclamide and three 50:50 polymer blends. The polymers used in the study are Ethocel Standard 10 Premium, Kollidon SR and Affinisol HPMC HME 4M. Glibenclamide solid dispersions are characterized using thermal analyses (thermogravimetric analysis (TGA) and differential scanning calorimetry), X-ray diffraction and scanning electron microscopy. This study reveals the transformation of glibenclamide into impurity A during the HME process using mass spectrometry and TGA. Thus, it enables the quantification of the extent of degradation. Furthermore, this work shows how polymer-polymer blend matrices exert an impact on process parameters, the active pharmaceutical ingredient's physical state, and drug release behavior. In vitro dissolution studies show that the polymeric matrices investigated provide extended drug release (over 24 h), mainly dictated by the polymer's chemical nature. This paper highlights how glibenclamide is degraded during HME and how polymer selection crucially affects the sustained release dynamics.

9.
Int J Pharm ; 661: 124312, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38876441

RESUMO

HYPOTHESIS: Sildenafil base and bosentan monohydrate are co-administered in a chronic therapy of pulmonary arterial hypertension (PAH). Both drugs are poorly soluble in water, and their bioavailability is limited to ca. 50 %. Since bosentan is a weak acid, whereas sildenafil is a weak base, we assumed that their co-amorphization could: (i) improve their solubility in the gastrointestinal fluids, (ii) enable to reach supersaturation and (iii) ensure stabilization of supersaturated solutions. If successful, this could accelerate the development of new fixed-dose combination drugs. EXPERIMENTS: The co-amorphous formulations were prepared using high energy ball milling. Their solid state properties were assessed using XRD, DSC, FT-MIR, and dielectric spectroscopy. Particle size distribution and surface wetting were also analyzed. Polarizing optical microscopy and scanning electron microscopy were applied to assess the microstructure of these powders. A new HPLC-DAD method was developed for a simultaneous quantification of both drugs. FINDINGS: It was shown that binary formulations in which bosentan was molecularly dispersed in sildenafil base (Tg = 64-78 °C) could be manufactured in the high energy ball milling process. When the sildenafil load was below 50 wt. %, the formulations showed the greatest thermal stability and formed long-lasting bosentan supersaturation in PBS.


Assuntos
Bosentana , Composição de Medicamentos , Citrato de Sildenafila , Solubilidade , Sulfonamidas , Bosentana/química , Bosentana/administração & dosagem , Citrato de Sildenafila/química , Citrato de Sildenafila/administração & dosagem , Sulfonamidas/química , Sulfonamidas/administração & dosagem , Composição de Medicamentos/métodos , Tamanho da Partícula , Química Farmacêutica/métodos , Anti-Hipertensivos/química , Anti-Hipertensivos/administração & dosagem , Estabilidade de Medicamentos , Combinação de Medicamentos
10.
Mol Pharm ; 10(2): 560-6, 2013 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-23253068

RESUMO

In this paper we present a new protocol to determine faster the solubility of drugs into polymer matrixes. The originality of the method lies in the fact that the equilibrium saturated states are reached by demixing of supersaturated amorphous solid solutions and not by dissolution of crystalline drug into the amorphous polymer matrix as for usual methods. The equilibrium saturated states are thus much faster to reach due to the extra molecular mobility resulting from the strong plasticizing effect associated with the supersaturation conditions. The method is validated using the indomethacin/polyvinylpyrrolidone mixture whose solubility diagram was previously determined by usual techniques. The supersaturated states have been directly obtained in the solid state by comilling, and the investigations have been performed by differential scanning calorimetry and powder X-ray diffraction.


Assuntos
Polímeros/química , Calorimetria , Indometacina/química , Povidona/química , Solubilidade , Difração de Raios X
11.
Pharm Res ; 30(1): 81-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22878684

RESUMO

PURPOSE: To clarify the polymorphism of racemic Ibuprofen and to determine the kinetic of the phase transformation that follows crystallisation of phase II. METHODS: Differential Scanning Calorimetry (DSC), X-ray powder diffraction and Hot Stage Microscopy are complementarily used to perform a kinetic investigation of the particular temperature range where competition between the occurrence of phases I and II is suspected. RESULTS: Experiments performed with the three techniques reveal that at 273 K the crystallisation to phase II is then followed by a solid-solid transition towards phase I. This transformation is exothermic (conversion enthalpy of 8.0 ± 0.5 kJ/mol), which proves that the two phases form a monotropic set. The kinetics of conversion deduced from X-Ray experiments follows a Johnson-Mehl-Avrami equation and the Hot Stage Microscopy allows us to establish that the transformation proceeds by the growth of some nuclei of phase I probably formed at lower temperature. CONCLUSIONS: These results allow us to precise the stability pattern of racemic Ibuprofen and to establish the kinetic conditions of appearance and interconversion of the different phases. Therefore such real time resolved investigations would help if applied in the screening of polymorphs when competitive crystallisations occur.


Assuntos
Analgésicos não Narcóticos/química , Ibuprofeno/química , Varredura Diferencial de Calorimetria , Cristalização , Cinética , Transição de Fase , Difração de Pó , Difração de Raios X
12.
J Phys Chem A ; 117(23): 4916-27, 2013 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-23682626

RESUMO

Two distinct ethanol aqueous solution droplets ((X(EtOH))L = 8.7 wt % and 46.5 wt %) are investigated by in situ Raman spectroscopy and X-ray diffraction between 253 and 88 K. Structural changes are identified by modifications in the O-H and C-H stretching modes (2800-3800 cm(-1) spectral region) during freezing and annealing events. They are attributed to the formation of ice and/or different hydrate structures in the EtOH-water system. At high initial ethanol concentration, the particle is found to be composed of a modified clathrate I (cubic structure) at 211 K on cooling and transformed into an ethanol hydrate II (monoclinic structure) on annealing between ∼143 and 173 K. This latter decomposes at ∼200 K and leaves an aqueous solution and ice Ih which further dissociates above ∼230 K. At low initial concentration, ice first forms on cooling and the particle consists of a crystalline ice core embedded in a liquid layer of high ethanol content at ~200 K (or an amorphous layer at lower T). A new hydrate (IV) of distinct structure (orthorhombic) is observed on annealing (from 100 K) between ∼123 K and ∼142 K (depending on initial composition), which transforms into the ethanol hydrate II at ∼160 K. The hydrate II decomposes at ∼200 K, and ice Ih remains (and dissociate above ∼220 K) in coexistence with the liquid layer of high ethanol content. It is proposed that the complex crystalline ice particles formed may have the potential to impact several atmospherical processes differently in comparison to the pure ice case.


Assuntos
Etanol/química , Gelo , Cristalização , Tamanho da Partícula , Análise Espectral Raman , Difração de Raios X
13.
Eur J Pharm Biopharm ; 188: 137-146, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37196874

RESUMO

In this study, high energy ball milling and nano spray drying were used to prepare amorphous solid dispersions of bosentan in copovidone for the first time. In particular, the impact of this polymer on the bosentan amorphization kinetics was investigated. Copovidone was shown to facilitate the amorphization of bosentan upon ball milling. As a result, bosentan was dispersed in copovidone at the molecular level, forming amorphous solid dispersions, regardless of the ratio of the compounds. The similarity between the values of the adjustment parameter that describes the goodness of fit of the Gordon-Taylor equation to the experimental data (K = 1.16) and that theoretically calculated for an ideal mixture (K = 1.13) supported these findings. The kind of coprocessing method determined the powder microstructure and the release rate. The opportunity to prepare submicrometer-sized spherical particles using nano spray drying was an important advantage of this technology. Both coprocessing methods allowed the formation of long-lasting supersaturated bosentan solutions in the gastric environment with maximum concentrations reached ranging from four (11.20 µg/mL) to more than ten times higher (31.17 µg/mL) than those recorded when the drug was vitrified alone (2.76 µg/mL). Moreover, this supersaturation lasted for a period of time at least twice as long as that of the amorphous bosentan processed without copovidone (15 min vs. 30-60 min). Finally, these binary amorphous solid dispersions were XRD-amorphous for a year of storage under ambient conditions.


Assuntos
Pirrolidinas , Composição de Medicamentos/métodos , Bosentana , Solubilidade , Pirrolidinas/química
14.
Regen Biomater ; 10: rbad008, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911146

RESUMO

Dexamethasone-loaded silicone matrices offer an interesting potential as innovative drug delivery systems, e.g. for the treatment of inner ear diseases or for pacemakers. Generally, very long drug release periods are targeted: several years/decades. This renders the development and optimization of novel drug products cumbersome: experimental feedback on the impact of the device design is obtained very slowly. A better understanding of the underlying mass transport mechanisms can help facilitating research in this field. A variety of silicone films were prepared in this study, loaded with amorphous or crystalline dexamethasone. Different polymorphic drug forms were investigated, the film thickness was altered and the drug optionally partially/completely exchanged by much more water-soluble dexamethasone 'phosphate'. Drug release studies in artificial perilymph, scanning electron microscopy, optical microscopy, differential scanning calorimetry, X-ray diffraction and Raman imaging were used to elucidate the physical states of the drugs and polymer, and of the systems' structure as well as dynamic changes thereof upon exposure to the release medium. Dexamethasone particles were initially homogeneously distributed throughout the systems. The hydrophobicity of the matrix former very much limits the amounts of water penetrating into the system, resulting in only partial drug dissolution. The mobile drug molecules diffuse out into the surrounding environment, due to concentration gradients. Interestingly, Raman imaging revealed that even very thin silicone layers (<20 µm) can effectively trap the drug for prolonged periods of time. The physical state of the drug (amorphous, crystalline) did not affect the resulting drug release kinetics to a noteworthy extent.

15.
Pharmaceutics ; 15(5)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37242562

RESUMO

A rational design of drug delivery systems requires in-depth knowledge not only of the drug itself, in terms of physical state and molecular mobility, but also of how it is distributed among a carrier and its interactions with the host matrix. In this context, this work reports the behavior of simvastatin (SIM) loaded in mesoporous silica MCM-41 matrix (average pore diameter ~3.5 nm) accessed by a set of experimental techniques, evidencing that it exists in an amorphous state (X-ray diffraction, ssNMR, ATR-FTIR, and DSC). The most significant fraction of SIM molecules corresponds to a high thermal resistant population, as shown by thermogravimetry, and which interacts strongly with the MCM silanol groups, as revealed by ATR-FTIR analysis. These findings are supported by Molecular Dynamics (MD) simulations predicting that SIM molecules anchor to the inner pore wall through multiple hydrogen bonds. This anchored molecular fraction lacks a calorimetric and dielectric signature corresponding to a dynamically rigid population. Furthermore, differential scanning calorimetry showed a weak glass transition that is shifted to lower temperatures compared to bulk amorphous SIM. This accelerated molecular population is coherent with an in-pore fraction of molecules distinct from bulklike SIM, as highlighted by MD simulations. MCM-41 loading proved to be a suitable strategy for a long-term stabilization (at least three years) of simvastatin in the amorphous form, whose unanchored population releases at a much higher rate compared to the crystalline drug dissolution. Oppositely, the surface-attached molecules are kept entrapped inside pores even after long-term release assays.

16.
Acta Crystallogr B ; 68(Pt 4): 407-11, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22810910

RESUMO

Powder X-ray diffraction patterns of the commercial phase of L-arabinitol were recorded with a laboratory diffractometer. The starting structural model was found by a Monte-Carlo simulated annealing method. The final structure was obtained through Rietveld refinements with soft restraints on the interatomic bond lengths and bond angles. H atoms of hydroxyl groups were localized by minimization of the crystalline energy. The cell is triclinic with the space group P1 and contains two molecules. The crystalline cohesion is achieved by an important network of O-H···O hydrogen bonds.

17.
Int J Pharm ; 622: 121846, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35609831

RESUMO

New clinical indications for an orphan drug bosentan are prompting the improvement of the drug formulation. Since bosentan is available as monohydrate, the information on its anhydrous form together with the assessment of its glass forming ability is necessary when developing enabling formulations. The aim of this research was, therefore, to analyze the phenomena occurring upon dehydration and amorphization of bosentan. The anhydrous form was obtained by a thermal treatment of the monohydrate and characterized for the first time using DSC and XRD. Two stable amorphous forms were prepared by cooling of the melt and high energy ball milling (Tg = 82 °C). The chemical stability of milled bosentan was evaluated using ATR-IR and 1H NMR as well. The kinetics of bosentan amorphization was established. It was stated that bosentan could be easily amorphized. Importantly, even if the system was semiamorphous, there was no recrystallization while heating. The concentration-time curves recorded in biorelevant media, confirmed the beneficial effect of amorphization on the dissolution of bosentan. Yet, the amorphous form recrystallized into the monohydrate form in the gastric milieu. This phenomenon was accompanied by a reversible color change from yellow, which is typical of bosentan glass, to creamywhite that is characteristic of the crude crystalline drug.


Assuntos
Desidratação , Reposicionamento de Medicamentos , Bosentana , Composição de Medicamentos , Estabilidade de Medicamentos , Humanos , Cinética , Solubilidade , Difração de Raios X
18.
RSC Adv ; 11(55): 34564-34571, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-35494765

RESUMO

Using the innovative solid-state loading (milling-assisted loading, MAL) method to confine caffeine to cylindrical pores (SBA-15, ∅ = 6 nm) gives the opportunity to explore the original physical states of caffeine and their subsequent transformation using low-frequency Raman spectroscopy, powder X-ray diffraction and microcalorimetry investigations. It was shown that MAL makes possible the loading of the selected form in the polymorphism of caffeine. While form II has similar structural and dynamics properties in confined and bulk forms, the confined rotator phase (form I) exhibits clear differences with the bulk form inherent to its orientational disorder. Interestingly, the two confined forms of caffeine undergo an exothermic disordering transformation upon heating into a physical state at the border between a nanocrystallized orientationally disordered phase and an amorphous state, not existing in the bulk form. The melting of this new physical state was observed at 150 °C, i.e. 85 degrees below the melting temperature of the bulk form I, thus demonstrating the confinement of caffeine. It was also found that the liquid confined to pores of 6 nm mean diameter recrystallizes upon cooling, which can be explained by the very disordered nature of the recrystallized state.

19.
Eur J Pharm Biopharm ; 168: 1-14, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34438018

RESUMO

A variety of polymer:polymer blends was used to prepare hot melt extrudates and empty capsules (bodies and caps) by injection-molding using a benchtop extruder (Babyplast). KollidonSR:inulin and Carbothane:inulin blends were investigated. The impact of the blend ratio on the water uptake and dry mass loss kinetics upon exposure to 0.1 MHCl, phosphate buffer pH6.8 and culture medium optionally inoculated with fecal samples from Inflammatory Bowel Disease (IBD) patients were studied. Hot melt extrudates were loaded with up to 60% theophylline, capsules were filled with drug powder. Increasing the inulin content led to increased water uptake and dry mass loss rates, resulting in accelerated drug release from the dosage forms, irrespective of the type of polymer blend. This can be attributed to the higher hydrophilicity/water-solubility of this polymer compared to KollidonSR and Carbothane. Interestingly, the presence of fecal samples in culture medium increased the water uptake and dry mass loss of hot melt extrudates to a certain extent, suggesting partial system degradation by bacterial enzymes. However, these phenomena did not translate into any noteworthy impact of the presence of colonic bacteria on theophylline release from the investigated extrudates or capsules. Hence, drug release can be expected to be independent of the location "small intestine vs. colon" from these dosage forms, which can be advantageous for long term release throughout the entire gastro intestinal tract.


Assuntos
Sistemas de Liberação de Medicamentos , Polímeros/química , Tecnologia Farmacêutica/métodos , Teofilina/administração & dosagem , Química Farmacêutica/métodos , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Interações Hidrofóbicas e Hidrofílicas , Inulina/química , Poliuretanos/química , Povidona/química , Solubilidade , Teofilina/química
20.
Acta Crystallogr C Struct Chem ; 77(Pt 12): 800-806, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34864723

RESUMO

The crystal structure of the stable form of vitamin B2 or riboflavin (C17H20N4O6) was solved using high-resolution powder X-ray diffraction (PXRD). The high-resolution PXRD pattern of riboflavin was recorded at room temperature at the European Synchrotron Radiation Facility (Grenoble, France). The starting structural model was generated using a Monte Carlo simulated annealing method. The final structure was obtained through Rietveld refinement. The positions of the H atoms belonging to hydroxy groups were estimated from computational energy minimizations. The symmetry is orthorhombic with the space group P212121 and the following lattice parameters: a = 20.01308, b = 15.07337 and c = 5.31565 Å.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA