Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Commun Signal ; 21(1): 78, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069625

RESUMO

BACKGROUND: Bovine theileriosis caused by the eukaryotic parasite Theileria annulata is an economically important tick-borne disease. If it is not treated promptly, this lymphoproliferative disease has a significant fatality rate. Buparvaquone (BPQ) is the only chemotherapy-based treatment available right now. However, with the emergence of BPQ resistance on the rise and no backup therapy available, it is critical to identify imperative drugs and new targets against Theileria parasites. METHODS: Artemisinin and its derivatives artesunate (ARS), artemether (ARM), or dihydroartemisinin (DHART) are the primary defence line against malaria parasites. This study has analysed artemisinin and its derivatives for their anti-Theilerial activity and mechanism of action. RESULTS: ARS and DHART showed potent activity against the Theileria-infected cells. BPQ in combination with ARS or DHART showed a synergistic effect. The compounds act specifically on the parasitised cells and have minimal cytotoxicity against the uninfected host cells. Treatment with ARS or DHART induces ROS-mediated oxidative DNA damage leading to cell death. Further blocking intracellular ROS by its scavengers antagonised the anti-parasitic activity of the compounds. Increased ROS production induces oxidative stress and DNA damage causing p53 activation followed by caspase-dependent apoptosis in the Theileria-infected cells. CONCLUSIONS: Our findings give unique insights into the previously unknown molecular pathways underpinning the anti-Theilerial action of artemisinin derivatives, which may aid in formulating new therapies against this deadly parasite. Video abstract.


Assuntos
Artemisininas , Theileria annulata , Animais , Bovinos , Theileria annulata/genética , Caspases , Espécies Reativas de Oxigênio , Artemisininas/farmacologia , Artesunato , Apoptose , Dano ao DNA , Estresse Oxidativo
2.
Pathogens ; 12(2)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36839568

RESUMO

Accurate quantification based on nucleic acid amplification is necessary to avoid the spread of pathogens, making early diagnosis essential. Droplet digital PCR (ddPCR) stands out for absolute parasite quantification because it combines microfluidics with the TaqMan test. This helps deliver maximum accuracy without needing a reference curve. This study assessed the efficacy of ddPCR as a detection tool for the bovine theileriosis (BT) caused by Theileria parasites. We developed and validated a duplex ddPCR method that detects and quantifies the Theileria genus (18S rRNA) and identifies clinically significant Theileria annulata parasites (TaSP) in experimental and clinical samples. ddPCR was shown to be as effective as qPCR throughout a 10-fold sample dilution range. However, ddPCR was more sensitive than qPCR at lower parasite DNA concentrations and reliably assessed up to 8.5 copies/µL of the TaSP gene in the infected DNA (0.01 ng) samples. The ddPCR was very accurate and reproducible, and it could follow therapeutic success in clinical cases of theileriosis. In conclusion, our ddPCR assays were highly sensitive and precise, providing a valuable resource for the study of absolute parasite quantification, drug treatment monitoring, epidemiological research, large-scale screening, and the identification of asymptomatic parasite reservoirs in the pursuit of BT eradication.

3.
Front Microbiol ; 12: 759817, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867888

RESUMO

The apicomplexan parasite, Theileria annulata, is the most prevalent hemoprotozoan in livestock, causing significant economic losses worldwide. It is essential to develop new and improved therapeutics, as current control measures are compromised by the development of resistance against the only available antitheilerial drug, buparvaquone (BPQ). Histone deacetylase inhibitors (HDACi) were shown to treat cancer effectively and revealed in vitro antiparasitic activity against apicomplexan parasites such as Plasmodium and Toxoplasma. In this study, we investigated the antitheilerial activity of the four anti-cancer HDACi (vorinostat, romidepsin, belinostat, and panobinostat) against the schizont stage of T. annulata parasites. All four HDACi showed potent activity and increased hyperacetylation of the histone-4 protein. However, based on the low host cell cytotoxicity and IC50 values, vorinostat (0.103 µM) and belinostat (0.069 µM) were the most effective showing antiparasitic activity. The parasite-specific activities of the HDACi (vorinostat and belinostat) were evaluated by western blotting using parasite-specific antibodies and in silico analysis. Both vorinostat and belinostat reduced the Theileria infected cell viability by downregulating anti-apoptotic proteins and mitochondrial dysfunction, leading to caspase-dependent cell apoptosis. The HDACi caused irreversible and antiproliferative effects on the Theileria infected cell lines. Our results collectively showed that vorinostat and belinostat could be used as an alternative therapy for treating Theileria parasites.

4.
Front Physiol ; 10: 673, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231237

RESUMO

Tropical theileriosis caused by Theileria annulata infection is a significant livestock disease affecting cattle health and productivity resulting in substantial monetary losses in several countries. Despite the use of an effective vaccine for disease control still, a high incidence of infection is reported from India. One of the many reasons behind the ineffective disease control can be the existence of genetically diverse T. annulata parasite population in India. Therefore, studies focusing on understanding the genotypes are warranted. In this study, we have performed a genetic analysis of the Indian T. annulata field cell lines and the vaccine line using microsatellite markers, Genotyping based sequencing (GBS) and tams1 gene polymorphism. The degree of allelic diversity and multiplicity of the infection was determined to be high in the Indian population. No geographical sub-structuring and linkage disequilibrium were observed in the population. High population diversity was found which were similar with countries like Oman, Tunisia, and Turkey in contrast to Portugal and China. The presence of multiple genotypes as determined by microsatellite marker genotyping, GBS analysis and tams1 gene polymorphism point toward a panmictic parasite population in India. These findings are the first report from India which would help in understanding the evolution and diversity of the T. annulata population in the country and can help in designing more effective strategies for controlling the disease.

5.
Sci Rep ; 8(1): 15441, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30337565

RESUMO

Theileria annulata is an intracellular parasite that causes active and latent forms of bovine theileriosis. Diagnosis of the disease is primarily based on traditional methods such as microscopy, however, PCR based methods have proven to be superior in the absence of clear disease symptoms. However, diagnosis is difficult in cases of lower parasitaemia by conventional PCR. Hence, a rapid and sensitive method which can detect early infection and low parasite load is required. Therefore, we have developed an absolute quantification based real-time PCR (qPCR) assay. Reference standard curve using recombinant plasmids of a host (hprt) and a parasite gene (tasp) was constructed, and the assay was initially standardised using in vitro T. annulata cell lines. Further, 414 blood samples from suspected theileriosis cases were also evaluated using qPCR. The assay can estimate host to parasite ratios, calculate parasitaemia and treatment effectiveness in the clinical cases of theileriosis. In comparison with the conventional PCR results, 44 additional positive cases were found. Therefore, the assay holds importance in a clinical setting due to its ability to quantify the parasite load in clinical samples. It may be further used in distinguishing active and latent theileriosis infections and detection of drug resistance in the field.


Assuntos
Bovinos/parasitologia , Interações Hospedeiro-Parasita/genética , Parasitemia/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Linfócitos T/parasitologia , Theileria annulata/genética , Theileriose/parasitologia , Animais , Células Cultivadas , Carga Parasitária , Parasitemia/parasitologia , Theileria annulata/isolamento & purificação , Theileriose/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA