RESUMO
The pathogenesis of overactivated visual perception in attention-deficit hyperactivity disorder (ADHD) remains unclear, which is interpreted as a cognitive compensation. The existing studies have proposed that perceptual abnormalities in neurodevelopmental disorders are associated with dysfunction of the contextual knowledge system, which influences the development and formation of perception. We hypothesized that alterations in contextual states may also be responsible for inducing perceptual abnormalities in ADHD. Therefore, the present study evaluated the characteristics of pre-stimulus alpha and its response to a single dose of methylphenidate (MPH). A total of 135 Chinese children participated in the first study, including 70 children with ADHD (age = 10.61 ± 1.93 years, female = 17) and 65 age- and sex-matched control children (age = 10.73 ± 1.93 years, female = 20). The second clinical trial included 19 Chinese children with ADHD (age = 11.85 ± 1.72 years, female = 4), with an identical visual spatial search task. Pre-stimulus alpha oscillations and P1 activity were significantly greater in children with ADHD than in the controls. Overactivated pre-stimulus alpha positively predicted P1. Both pre-stimulus alpha and P1 overactivation have beneficial effects on cognitive performance in children with ADHD. No intervening effect of a single dose of MPH on the compensatory activation of pre-stimulus alpha and P1 were observed. Our findings extended the perceptual activation to the contextual knowledge system, suggesting that compensatory perception in children with ADHD is more likely to be a top-down regulated cognitive operational process.
Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Estimulantes do Sistema Nervoso Central , Metilfenidato , Adolescente , Criança , Feminino , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Estimulantes do Sistema Nervoso Central/farmacologia , Estimulantes do Sistema Nervoso Central/uso terapêutico , Metilfenidato/farmacologia , Metilfenidato/uso terapêutico , Percepção Visual , Masculino , Ensaios Clínicos como AssuntoRESUMO
Wheat powdery mildew is an important fungal disease that seriously jeopardizes wheat production, which poses a serious threat to food safety. SJ106 is a high-quality, disease-resistant spring wheat variety; this disease resistance is derived from Wheat-wheatgrass 33. In this study, the powdery mildew resistance genes in SJ106 were located at the end of chromosome 6DS, a new disease resistance locus tentatively named PmSJ106 locus. This interval was composed of a nucleotide-binding leucine-rich repeat (NLR) gene cluster containing 19 NLR genes. Five NLRs were tandem duplicated genes, and one of them (a coiled coil domain-nucleotide binding site-leucine-rich repeat (CC-NBS-LRR; CNL) type gene, TaRGA5-like) expressed 69-836-fold in SJ106 compared with the susceptible control. The genome DNA and cDNA sequences of TaRGA5-like were amplified from SJ106, which contain several nucleotide polymorphisms in LRR regions compared with susceptible individuals and Chinese Spring. Overexpression of TaRGA5-like significantly increased resistance to powdery mildew in susceptible receptor wheat Jinqiang5. However, Virus induced gene silence (VIGS) of TaRGA5-like resulted in only a small decrease of SJ106 in disease resistance, presumably compensated by other NLR duplicated genes. The results suggested that TaRGA5-like confers partial powdery mildew resistance in SJ106. As a member of the PmSJ106 locus, TaRGA5-like functioned together with other NLR duplicated genes to improve wheat resistance to powdery mildew. Wheat variety SJ106 would become a novel and potentially valuable germplasm for powdery mildew resistance.
Assuntos
Ascomicetos , Resistência à Doença , Proteínas NLR , Doenças das Plantas , Proteínas de Plantas , Triticum , Triticum/genética , Triticum/microbiologia , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas NLR/genética , Ascomicetos/patogenicidade , Mapeamento Cromossômico , Genes de Plantas , Família Multigênica , Regulação da Expressão Gênica de Plantas , Cromossomos de Plantas/genéticaRESUMO
In addition to higher-order executive functions, underlying sensory processing ability is also thought to play an important role in Attention-Deficit/Hyperactivity Disorder (AD/HD). An event-related potential feature, the mismatch negativity, reflects the ability of automatic sensory change processing and may be correlated with AD/HD symptoms and executive functions. This study aims to investigate the characteristics of visual mismatch negativity (vMMN) in adults with AD/HD. Twenty eight adults with AD/HD and 31 healthy controls were included in this study. These two groups were matched in age, IQ and sex. In addition, both groups completed psychiatric evaluations, a visual ERP task used to elicit vMMN, and psychological measures about AD/HD symptoms and day-to-day executive functions. Compared to trols, the late vMMN (230-330 ms) was significantly reduced in the AD/HD group. Correlation analyses showed that late vMMN was correlated with executive functions but not AD/HD symptoms. However, further mediation analyses showed that different executive functions had mediated the relationships between late vMMN and AD/HD symptoms. Our findings indicate that the late vMMN, reflecting automatic sensory change processing ability, was impaired in adults with AD/HD. This impairment could have negative impact on AD/HD symptoms via affecting day-to-day executive functions.
RESUMO
The "brain-cognition-behavior" process is an important pathological pathway in children with attention-deficit/hyperactivity disorder (ADHD). Symptom guided multimodal neuroimaging fusion can capture behaviorally relevant and intrinsically linked structural and functional features, which can help to construct a systematic model of the pathology. Analyzing the multimodal neuroimage fusion pattern and exploring how these brain features affect executive function (EF) and leads to behavioral impairment is the focus of this study. Based on gray matter volume (GMV) and fractional amplitude of low frequency fluctuation (fALFF) for 152 ADHD and 102 healthy controls (HC), the total symptom score (TO) was set as a reference to identify co-varying components. Based on the correlation between the identified co-varying components and EF, further mediation analysis was used to explore the relationship between brain image features, EF and clinical symptoms. This study found that the abnormalities of GMV and fALFF in ADHD are mainly located in the default mode network (DMN) and prefrontal-striatal-cerebellar circuits, respectively. GMV in ADHD influences the TO through Metacognition Index, while fALFF in HC mediates the TO through behavior regulation index (BRI). Further analysis revealed that GMV in HC influences fALFF, which further modulates BRI and subsequently affects hyperactivity-impulsivity score. To conclude, structural brain abnormalities in the DMN in ADHD may affect local brain function in the prefrontal-striatal-cerebellar circuit, making it difficult to regulate EF in terms of inhibit, shift, and emotional control, and ultimately leading to hyperactive-impulsive behavior.
RESUMO
Although some nucleotide binding, leucine-rich repeat immune receptor (NLR) proteins conferring resistance to specific viruses have been identified in dicot plants, NLR proteins involved in viral resistance have not been described in monocots. We have used map-based cloning to isolate the CC-NB-LRR (CNL) Barley stripe mosaic virus (BSMV) resistance gene barley stripe resistance 1 (BSR1) from Brachypodium distachyon Bd3-1 inbred line. Stable BSR1 transgenic Brachypodium line Bd21-3, barley (Golden Promise) and wheat (Kenong 199) plants developed resistance against BSMV ND18 strain. Allelic variation analyses indicated that BSR1 is present in several Brachypodium accessions collected from countries in the Middle East. Protein domain swaps revealed that the intact LRR domain and the C-terminus of BSR1 are required for resistance. BSR1 interacts with the BSMV ND18 TGB1 protein in planta and shows temperature-sensitive antiviral resistance. The R390 and T392 residues of TGB1ND (ND18 strain) and the G196 and K197 residues within the BSR1 P-loop motif are key amino acids required for immune activation. BSR1 is the first cloned virus resistance gene encoding a typical CNL protein in monocots, highlighting the utility of the Brachypodium model for isolation and analysis of agronomically important genes for crop improvement.
Assuntos
Brachypodium , Hordeum , Hordeum/genética , Brachypodium/genética , Proteínas de Repetições Ricas em Leucina , Domínios ProteicosRESUMO
OBJECTIVE: We leveraged microstate characteristics and power features to examine temporal and spectral deviations underlying persistent and remittent attention-deficit/hyperactivity disorder (ADHD). METHODS: 50 young adults with childhood ADHD (28 persisters, 22 remitters) and 28 demographically similar healthy controls (HC) were compared on microstates features and frequency principal components (f-PCs) of eye-closed resting state. Support vector machine model with sequential forward selection (SVM-SFS) was utilized to discriminate three groups. RESULTS: Four microstates and four comparable f-PCs were identified. Compared to HC, ADHD persisters showed prolonged duration in microstate C, elevated power of the delta component (D), and compromised amplitude of the two alpha components (A1 and A2). Remitters showed increased duration and coverage of microstate C, together with decreased activity of D, relatively intact amplitude of A1, and amplitude reduction in A2. The SVM-SFS algorithm achieved an accuracy of 93.59% in classifying persisters, remitters and controls. The most discriminative features selected were those exhibiting group differences. CONCLUSIONS: We found widespread anomalies in ADHD persisters in brain dynamics and intrinsic EEG components. Meanwhile, the neural features in remitters exhibited multiple patterns. SIGNIFICANCE: This study underlines the use of microstate dynamics and spectral components as potential markers of persistent and remittent ADHD.
Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Eletroencefalografia , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Masculino , Feminino , Adulto Jovem , Adulto , Eletroencefalografia/métodos , Máquina de Vetores de Suporte , AdolescenteRESUMO
Plants form two immune systems, pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI), to combat Blumeria graminis f. sp. tritici (Bgt) infection during the evolutionary process. In PTI, receptor-like kinases (RLKs) play important roles during pathogen infections. Based on our previous reports, there were 280 TaRLKs identified in early response to powdery mildew infection, which were divided into 34 subfamilies in this study. Differences in gene structures, cis-acting elements, and expression levels implied the function diversity of TaRLKs. TaRLK2.4, a member of LRK10L-RLKs subfamily, contained 665 amino acids, and located on the cell membrane. The main objective of this study was to investigate the role of the receptor-like kinase gene TaRLK2.4 in conferring powdery mildew resistance in wheat. Real-time quantitative PCR results indicated that TaRLK2.4 expressed during Bgt infection process, and exhibited a transgressive expression characteristic in disease resistance NILs (BJ-1). To elucidate the function of TaRLK2.4 during Bgt infection, the comprehensive analysis of virus induced gene silence and over-expression demonstrated that TaRLK2.4 promoted powdery mildew resistance positively. In summary, these results contribute to a deeper understanding of the complex and diverse biological functions of RLKs, and provide new genetic resources for wheat molecular breeding.
Assuntos
Ascomicetos , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Proteínas de Plantas , Triticum , Triticum/microbiologia , Triticum/genética , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismoRESUMO
Attention Deficit Hyperactivity Disorder (ADHD) is a highly prevalent childhood disorder, and related research has been increasing in recent years. However, it remains a challenging issue to accurately identify individuals with ADHD. The research proposes a method for ADHD detection using Recursive Feature Elimination-Genetic Algorithm (RFE-GA) for the feature selection of EEG data. Firstly, this study employed Transfer Entropy (TE) to construct brain networks from the EEG data of the ADHD and Normal groups, conducting an analysis of effective connectivity to unveil causal relationships in the brain's information exchange activities. Subsequently, a dual-layer feature selection method combining Recursive Feature Elimination (RFE) and Genetic Algorithm (GA) was proposed. Using the global search capability of GA and the feature selection ability of RFE, the performance of each feature subset is evaluated to find the optimal feature subset. Finally, a Support Vector Machine (SVM) classifier was employed to classify the ultimate feature set. The results revealed the control group exhibited lower connectivity strength in the left temporal alpha and beta bands, but higher frontal connectivity strength compared to the ADHD group. Additionally, in the gamma frequency band, the control group had higher top lobe connectivity strength than the ADHD group. Through the RFE-GA feature selection method, the optimized feature set was more concise, achieving classification accuracies of 91.3%, 94.1%, and 90.7% for the alpha, beta, and gamma frequency bands, respectively. The proposed RFE-GA feature selection method significantly reduced the number of features, thereby improving classification accuracy. .
RESUMO
The purpose of this study is to investigate the engineering mechanical properties of granite after various heating/cooling treatments through laboratory investigation. Granite specimens were heated at different temperatures (25, 200, 400, 500, 600, and 800 °C) and cooled by two methods (natural cooling and water cooling) to investigate the change patterns of engineering mechanical properties of granite materials after heating/cooling treatments, including surface hardness, uniaxial compressive strength, modulus of elasticity, peak strain, and point load strength. The damage mechanisms of granite under different heating/cooling treatments were also revealed. Finally, the correlation between uniaxial compressive strength, point load strength, and surface hardness were analyzed by linear and nonlinear fitting methods. The results showed that the strength index of granite can be well evaluated by the hardness index, which has important engineering significance.
Assuntos
Temperatura Baixa , Calefação , Elasticidade , Dióxido de Silício , Teste de Materiais , Propriedades de SuperfícieRESUMO
Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a destructive disease affecting wheat crops worldwide. Functional genes can be activated in response to Bgt inoculations. Calcineurin B-like protein (CBL) together with CBL-interacting protein kinase (CIPK) forms the CBL-CIPK protein complex that participates in Ca2+ sensor kinase-related signaling pathways responding to abiotic and biotic stresses. In this study, we performed a genome-wide screening and identified 27 CIPK subfamilies (123 CIPK transcripts, TaCIPKs) including 55 new and 47 updated TaCIPKs in wheat. Phylogenetic analysis revealed that 123 TaCIPKs could be divided into four groups. Segmental duplications and tandem repeats promoted the expansion of the TaCIPK family. Gene function was further evidenced by differences in gene structure, cis-elements, and protein domains. TaCIPK15-4A was cloned in this study. TaCIPK15-4A contained 17 serine, seven tyrosine, and 15 threonine phosphorylation sites and localized in the plasma membrane and cytoplasm. TaCIPK15-4A expression was induced after Bgt inoculation. Virus-induced gene silencing and overexpression experiments indicated that TaCIPK15-4A could play a positive role in wheat disease resistance to Bgt. Overall, these results provide insights into the role of the TaCIPK gene family in wheat resistance and could be beneficial for further research to prevent Bgt infection.
Assuntos
Ascomicetos , Triticum , Triticum/genética , Triticum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Ascomicetos/metabolismo , Doenças das Plantas/genética , Resistência à Doença/genéticaRESUMO
Previous studies reported that the inferior parietal lobule (IPL) had lower activation during visuospatial attention in children with attention-deficit/hyperactivity disorder (ADHD), while the functional connectivity (FC) between the IPL and other brain regions and how cognitive demand might modulate IPL's FC remain unclear. We performed a functional magnetic resonance imaging experiment recruiting two task conditions with relatively low and high cognitive demand of visuospatial attention. Forty-four children with ADHD and 36 age- and sex-matched healthy controls were included. IPL's regional activation and FC intensities were compared between groups and correlated with clinical measurements. We found that the IPL had significantly reduced activation in children with ADHD compared to healthy controls and this abnormal activation was not modulated by the cognitive demand of visuospatial attention. Importantly, further analysis revealed that the functional connectivity between IPL and inferior frontal gyrus was modulated by the cognitive demand of visuospatial attention in children with ADHD. These results revealed a modulatory effect of cognitive demand of visuospatial attention on IPL's functional connectivity but not IPL's activation in children with ADHD. More generally, these results highlight the functional reorganization of the brain activity as a possible compensatory strategy in response to the symptoms of ADHD.
RESUMO
OBJECTIVE: Exploring how abnormal brain function in children with ADHD affects executive function and ultimately leads to behavioral impairment provides a theoretical basis for clinically targeted neurotherapy and cognitive training. METHOD: Amplitude of low frequency fluctuations (ALFF), regional homogeneity (ReHo), and seed-based FC were analyzed in 53 ADHD and 52 healthy controls. The "brain-cognition-behavior" relationship was further explored using mediation analysis. RESULTS: ADHD showed abnormal local activation in the middle temporal gyrus (MTG), inferior occipital gyrus and inferior frontal gyrus (IFG) and reduced FC between the IFG and the cerebellum. ADHD diagnosis may affect ALFF of MTG and further modulate shift and finally affect inattentive symptoms. It may also affect the total symptoms through the FC of the IFG with the cerebellum. CONCLUSION: ADHD showed extensive spontaneous activity abnormalities and frontal-cerebellar FC impairments. Localized functional abnormalities in the MTG may affect the shift in EF, resulting in attention deficit behavior.
Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Humanos , Criança , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Cognição , Função Executiva , Mapeamento Encefálico/métodosRESUMO
Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is responsible for significant yield losses worldwide, which can be minimized by the deployment of Pst resistance genes. Yr78 is an adult plant partial-resistance gene that has remained effective against the post-2000 virulent Pst races. In this study, we generated a high-resolution map of Yr78 based on 6,124 segregating chromosomes. We mapped Yr78 within a 0.05-cM interval on the short arm of chromosome 6B, which corresponds to an 11.16 Mb region between TraesCS6B02G116200 and TraesCS6B02G118000 in the 'Chinese Spring' Ref Seq. v1.1 genome. This interval is likely larger because it includes the unassembled NOR-B2 region, which may have contributed to the low recombination rate detected in this region. The Yr78 candidate region includes 15 genes that were prioritized for future functional studies based on their annotated function and polymorphisms between susceptible and resistant genotypes. Using exome capture data, we identified five major haplotypes in the candidate gene region, with the H1 haplotype associated with Yr78. The H1 haplotype was not detected in tetraploid wheat (Triticum turgidum L.) but was found in â¼30% of the common wheat cultivars (Triticum aestivum L.), suggesting that the associated resistance to stripe rust may have favored the selection of this haplotype. We developed two diagnostic molecular markers for the H1 haplotype that will facilitate the deployment of Yr78 in wheat breeding programs.
Assuntos
Basidiomycota , Triticum , Mapeamento Cromossômico , Cromossomos de Plantas , Marcadores Genéticos , Melhoramento Vegetal , Doenças das Plantas/genética , Triticum/genéticaRESUMO
Social anxiety (SA) is quite common and associated with multiple comorbidities. Here, we examined the effects of working memory (WM) training on various indices potentially related to SA. Pre-selected university students with elevated self-reported SA symptoms were assigned to a WM training (n = 21) or an active control treatment condition (n = 21). Pre- and post-treatment assessments were made using questionnaires related to (social) anxiety and depression, and tasks measuring WM, interference control, and attentional biases towards, and event-related potentials (ERPs) elicited by, angry faces. The training enhanced WM transfer task performance, reduced SA symptoms, and changed the amplitude of the P1, N170, P2, and N2 ERP components. However, the latter changes did not mediate the effect of WM training on SA symptoms. These data provide preliminary evidence of the usefulness of WM trainings to reduce potential indices of SA, but further research is necessary to unravel the causal relation among these indices.
Assuntos
Ansiedade/terapia , Cognição/fisiologia , Potenciais Evocados/fisiologia , Aprendizagem/fisiologia , Memória de Curto Prazo/fisiologia , Adulto , Ansiedade/fisiopatologia , Ansiedade/psicologia , Eletroencefalografia , Feminino , Humanos , Masculino , Autorrelato , Estudantes/psicologia , Análise e Desempenho de Tarefas , Adulto JovemRESUMO
The species Karenia mikimotoi is a common nearshore red tide alga that can secrete hemolytic exotoxin and ichthyotoxin, which can induce the death of fish and shellfish, causing severe economic losses. In this study, loop-mediated isothermal amplification (LAMP) was employed in combination with the lateral flow dipstick (LFD) visual detection method to establish the LAMP-LFD rapid detection method for K. mikimotoi. The internal transcribed spacer ITS1-5.8S-ITS2 of K. mikimotoi was used as the target sequence and was amplified with specific primers designed in this study. The results indicated that the amplification optimal reaction conditions for LAMP in this paper were for 20 min at 65 °C. Moreover, LAMP had excellent specificity, showing negative results for other common red tide causing algal species. In field samples, we successfully reduced the total time, with only 23 min needed from LAMP amplification to LFD result display, which was shorter than that of conventional PCR. Consequently, LAMP-LFD should be useful for rapid field detection of low-density K. mikimotoi and for the early prevention of red tide induced by such algae.
Assuntos
Cromatografia/métodos , Dinoflagellida/isolamento & purificação , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Baías , China , Cromatografia/instrumentação , Primers do DNA/genética , DNA Intergênico/genética , Dinoflagellida/genética , Proliferação Nociva de Algas , Sensibilidade e EspecificidadeRESUMO
OBJECTIVE: To accurately define the injury position of medial patellar retinaculum with acute injury under the guiding of high frequency ultrasonography, and to study therapeutic effects of suture operation on medial patellar retinaculum in the injuried position. METHODS: From June 2009 to March 2014, there were 17 patients with acute patellar dislocation, 6 males and 11 females with average age of (16.2±6.2) years old. The duration time of patellar dislocation was 2 weeks. Before operation, the medial patellar retinaculum of all patients were examined with the high frequency ultrasonography, and the skin with the non-continuous fiber was iudicated as the surface mark under the high frequency ultrasonography. The injury position of medial retinaculum was in the middle of 5 patients who were treated with suture operation of arthroscopic medial retinaculum. The injury position was in the patellar edge in 12 patients who were treated with fixing bone anchor on patella and arthroscopic suture operation of medial retinaculum. The CT examination and Kujala scores, patellar tilt angle on CT film, measured maximal angles of passive or active knee flexion and apprehension test were observed before treatment and postoperative 18 months. RESULTS: Eighteen months after treatment, Kujala scores were 92.2±11.1 and patellar tilt angle were(11.5±4.2) °, and there was no statistical difference between post-operation and pre-operation. The difference between maximal angles of passive knee flexion(133.5±4.2) ° and normal had no statistically significance. Maximal angles of active knee flexion were(153.5±4.6) °. Ultrasonography showed the continuous fiber of medial retinaculum. A patient showed positive apprehension test and no patient had the recurrence patella instability after operation. CONCLUSIONS: The injury position of medial patellar retinaculum was accurately shown by high frequency ultrasonography and treated with arthroscopic suture operation. Knee immobilization time after operation was shorten. Eighteen months after operation, knee joint function was good, and no patient had the recurrence patella instability.
Assuntos
Artroscopia , Patela/lesões , Luxação Patelar/cirurgia , Ligamento Patelar/lesões , Adolescente , Feminino , Humanos , Articulação do Joelho , Masculino , Patela/diagnóstico por imagem , Luxação Patelar/diagnóstico por imagem , Ligamento Patelar/diagnóstico por imagem , UltrassonografiaRESUMO
High-density genetic linkage maps are necessary for precisely mapping quantitative trait loci (QTLs) controlling grain shape and size in wheat. By applying the Infinium iSelect 9K SNP assay, we have constructed a high-density genetic linkage map with 269 F 8 recombinant inbred lines (RILs) developed between a Chinese cornerstone wheat breeding parental line Yanda1817 and a high-yielding line Beinong6. The map contains 2431 SNPs and 128 SSR & EST-SSR markers in a total coverage of 3213.2 cM with an average interval of 1.26 cM per marker. Eighty-eight QTLs for thousand-grain weight (TGW), grain length (GL), grain width (GW) and grain thickness (GT) were detected in nine ecological environments (Beijing, Shijiazhuang and Kaifeng) during five years between 2010-2014 by inclusive composite interval mapping (ICIM) (LOD ≥ 2.5). Among which, 17 QTLs for TGW were mapped on chromosomes 1A, 1B, 2A, 2B, 3A, 3B, 3D, 4A, 4D, 5A, 5B and 6B with phenotypic variations ranging from 2.62% to 12.08%. Four stable QTLs for TGW could be detected in five and seven environments, respectively. Thirty-two QTLs for GL were mapped on chromosomes 1B, 1D, 2A, 2B, 2D, 3B, 3D, 4A, 4B, 4D, 5A, 5B, 6B, 7A and 7B, with phenotypic variations ranging from 2.62% to 44.39%. QGl.cau-2A.2 can be detected in all the environments with the largest phenotypic variations, indicating that it is a major and stable QTL. For GW, 12 QTLs were identified with phenotypic variations range from 3.69% to 12.30%. We found 27 QTLs for GT with phenotypic variations ranged from 2.55% to 36.42%. In particular, QTL QGt.cau-5A.1 with phenotypic variations of 6.82-23.59% was detected in all the nine environments. Moreover, pleiotropic effects were detected for several QTL loci responsible for grain shape and size that could serve as target regions for fine mapping and marker assisted selection in wheat breeding programs.