Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(33): 20316-20324, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32737163

RESUMO

Xyloglucan (XyG) is an abundant component of the primary cell walls of most plants. While the structure of XyG has been well studied, much remains to be learned about its biosynthesis. Here we employed reverse genetics to investigate the role of Arabidopsis cellulose synthase like-C (CSLC) proteins in XyG biosynthesis. We found that single mutants containing a T-DNA in each of the five Arabidopsis CSLC genes had normal levels of XyG. However, higher-order cslc mutants had significantly reduced XyG levels, and a mutant with disruptions in all five CSLC genes had no detectable XyG. The higher-order mutants grew with mild tissue-specific phenotypes. Despite the apparent lack of XyG, the cslc quintuple mutant did not display significant alteration of gene expression at the whole-genome level, excluding transcriptional compensation. The quintuple mutant could be complemented by each of the five CSLC genes, supporting the conclusion that each of them encodes a XyG glucan synthase. Phylogenetic analyses indicated that the CSLC genes are widespread in the plant kingdom and evolved from an ancient family. These results establish the role of the CSLC genes in XyG biosynthesis, and the mutants described here provide valuable tools with which to study both the molecular details of XyG biosynthesis and the role of XyG in plant cell wall structure and function.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Parede Celular/metabolismo , Glucanos/biossíntese , Glucosiltransferases/metabolismo , Células Vegetais/metabolismo , Xilanos/biossíntese , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/genética , Mutação , Filogenia
2.
Plant Physiol ; 159(4): 1367-84, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22696020

RESUMO

Xyloglucan is an important hemicellulosic polysaccharide in dicot primary cell walls. Most of the enzymes involved in xyloglucan synthesis have been identified. However, many important details of its synthesis in vivo remain unknown. The roles of three genes encoding xylosyltransferases participating in xyloglucan biosynthesis in Arabidopsis (Arabidopsis thaliana) were further investigated using reverse genetic, biochemical, and immunological approaches. New double mutants (xxt1 xxt5 and xxt2 xxt5) and a triple mutant (xxt1 xxt2 xxt5) were generated, characterized, and compared with three single mutants and the xxt1 xxt2 double mutant that had been isolated previously. Antibody-based glycome profiling was applied in combination with chemical and immunohistochemical analyses for these characterizations. From the combined data, we conclude that XXT1 and XXT2 are responsible for the bulk of the xylosylation of the glucan backbone, and at least one of these proteins must be present and active for xyloglucan to be made. XXT5 plays a significant but as yet uncharacterized role in this process. The glycome profiling data demonstrate that the lack of detectable xyloglucan does not cause significant compensatory changes in other polysaccharides, although changes in nonxyloglucan polysaccharide amounts cannot be ruled out. Structural rearrangements of the polysaccharide network appear responsible for maintaining wall integrity in the absence of xyloglucan, thereby allowing nearly normal plant growth in plants lacking xyloglucan. Finally, results from immunohistochemical studies, combined with known information about expression patterns of the three genes, suggest that different combinations of xylosyltransferases contribute differently to xyloglucan biosynthesis in the various cell types found in stems, roots, and hypocotyls.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/enzimologia , Arabidopsis/genética , Genes de Plantas/genética , Glucanos/biossíntese , Mutação/genética , Xilanos/biossíntese , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Celulase/metabolismo , DNA Bacteriano/genética , Epitopos/imunologia , Imunofluorescência , Proteínas Fúngicas/farmacologia , Glucanos/química , Glucanos/imunologia , Glicômica , Glicosídeo Hidrolases/farmacologia , Hipocótilo/citologia , Hipocótilo/efeitos dos fármacos , Hipocótilo/metabolismo , Espectrometria de Massas , Mutagênese Insercional/genética , Especificidade de Órgãos/efeitos dos fármacos , Fenótipo , Extratos Vegetais , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/metabolismo , Polissacarídeo-Liases/farmacologia , Plântula/metabolismo , Especificidade por Substrato/efeitos dos fármacos , Xilanos/química , Xilanos/imunologia
3.
Biochem Mol Biol Educ ; 49(6): 926-934, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34559440

RESUMO

A complex research project was translated into a Course-based Undergraduate Research Experience (CURE), which was implemented in sections of an introductory Cell and Molecular Biology laboratory course. The research laboratory generated an engineered plant line producing a growth-inhibiting, lipid-derived plant hormone and mutagenized this line. Students in the CURE cultured the mutagenized plant population and selected and characterized suppressor mutants. They learned to observe phenotypes related to the biosynthesis and perception of the plant hormone and explored the genetic and biochemical basis of these phenotypes. As the students studied the relevant genetic, molecular and biochemical concepts during this CURE, they were able to translate this knowledge into practice and develop scientific arguments. This CURE was a successful collaboration between the teaching lab and the research lab. It benefited both parties as the students had a real-life, deep learning experience in scientific methodology, while the research lab gathered data and materials for further studies.


Assuntos
Arabidopsis , Arabidopsis/genética , Biologia/educação , Currículo , Humanos , Conhecimento , Laboratórios , Biologia Molecular/educação , Estudantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA