Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Part Fibre Toxicol ; 18(1): 40, 2021 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-34717665

RESUMO

BACKGROUND: Pulmonary exposure to high doses of engineered carbonaceous nanomaterials (NMs) is known to trigger inflammation in the lungs paralleled by an acute phase response. Toll-like receptors (TLRs), particularly TLR2 and TLR4, have recently been discussed as potential NM-sensors, initiating inflammation. Using Tlr2 and Tlr4 knock out (KO) mice, we addressed this hypothesis and compared the pattern of inflammation in lung and acute phase response in lung and liver 24 h after intratracheal instillation of three differently shaped carbonaceous NMs, spherical carbon black (CB), multi-walled carbon nanotubes (CNT), graphene oxide (GO) plates and bacterial lipopolysaccharide (LPS) as positive control. RESULTS: The LPS control confirmed a distinct TLR4-dependency as well as a pronounced contribution of TLR2 by reducing the levels of pulmonary inflammation to 30 and 60% of levels in wild type (WT) mice. At the doses chosen, all NM caused comparable neutrophil influxes into the lungs of WT mice, and reduced levels were only detected for GO-exposed Tlr2 KO mice (35%) and for CNT-exposed Tlr4 KO mice (65%). LPS-induced gene expression was strongly TLR4-dependent. CB-induced gene expression was unaffected by TLR status. Both GO and MWCNT-induced Saa1 expression was TLR4-dependent. GO-induced expression of Cxcl2, Cxcl5, Saa1 and Saa3 were TLR2-dependent. NM-mediated hepatic acute phase response in terms of liver gene expression of Saa1 and Lcn2 was shown to depend on TLR2 for all three NMs. TLR4, in contrast, was only relevant for the acute phase response caused by CNTs, and as expected by LPS. CONCLUSION: TLR2 and TLR4 signaling was not involved in the acute inflammatory response caused by CB exposure, but contributed considerably to that of GO and CNTs, respectively. The strong involvement of TLR2 in the hepatic acute phase response caused by pulmonary exposure to all three NMs deserves further investigations.


Assuntos
Nanotubos de Carbono , Receptor 2 Toll-Like , Animais , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nanotubos de Carbono/toxicidade , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética
2.
Toxicol Appl Pharmacol ; 386: 114830, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31734322

RESUMO

Nanomaterial (NM) characteristics may affect the pulmonary toxicity and inflammatory response, including specific surface area, size, shape, crystal phase or other surface characteristics. Grouping of TiO2 in hazard assessment might be challenging because of variation in physicochemical properties. We exposed C57BL/6 J mice to a single dose of four anatase TiO2 NMs with various sizes and shapes by intratracheal instillation and assessed the pulmonary toxicity 1, 3, 28, 90 or 180 days post-exposure. The quartz DQ12 was included as benchmark particle. Pulmonary responses were evaluated by histopathology, electron microscopy, bronchoalveolar lavage (BAL) fluid cell composition and acute phase response. Genotoxicity was evaluated by DNA strand break levels in BAL cells, lung and liver in the comet assay. Multiple regression analyses were applied to identify specific TiO2 NMs properties important for the pulmonary inflammation and acute phase response. The TiO2 NMs induced similar inflammatory responses when surface area was used as dose metrics, although inflammatory and acute phase response was greatest and more persistent for the TiO2 tube. Similar histopathological changes were observed for the TiO2 tube and DQ12 including pulmonary alveolar proteinosis indicating profound effects related to the tube shape. Comparison with previously published data on rutile TiO2 NMs indicated that rutile TiO2 NMs were more inflammogenic in terms of neutrophil influx than anatase TiO2 NMs when normalized to total deposited surface area. Overall, the results suggest that specific surface area, crystal phase and shape of TiO2 NMs are important predictors for the observed pulmonary effects of TiO2 NMs.


Assuntos
Reação de Fase Aguda/induzido quimicamente , Nanoestruturas/toxicidade , Pneumonia/induzido quimicamente , Proteinose Alveolar Pulmonar/induzido quimicamente , Titânio/toxicidade , Animais , Líquido da Lavagem Broncoalveolar/citologia , Relação Dose-Resposta a Droga , Feminino , Pulmão/efeitos dos fármacos , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Pneumonia/patologia , Alvéolos Pulmonares/efeitos dos fármacos
3.
Mutagenesis ; 33(1): 9-19, 2018 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-28992346

RESUMO

The formamidopyrimidine DNA glycosylase (Fpg) and human 8-oxoguanine DNA glycosylase (hOGG1)-modified comet assays have been widely used in human biomonitoring studies. The purpose of this article is to assess differences in reported levels of Fpg- and hOGG1-sensitive sites in leukocytes and suggest suitable assay controls for the measurement of oxidatively damaged DNA. An assessment of the literature showed a large variation in the reported levels of Fpg-sensitive sites (range 0.05-1.31 lesions/106 bp). The levels of Fpg-sensitive sites are lower in studies where Fpg has been obtained from commercial suppliers or unknown sources as compared to Fpg from one particular non-commercial source (χ2 = 7.14, P = 0.028). The levels of hOGG1-sensitive sites are lower (range: 0.04-0.18 lesions/106 bp in leukocytes) compared to the Fpg-sensitive sites. Surprisingly, few publications have reported the use of oxidising agents as assay controls, with the exception of hydrogen peroxide. This may be due to a lack of consensus about suitable controls for the Fpg- and hOGG1-modified comet assay. A major challenge is to find an oxidising agent that only oxidises nucleobases and does not generate DNA strand breaks because this reduces the dynamic range of Fpg- and hOGG1-sensitive sites in the comet assay. Based on a literature search we selected the photosensitiser Ro19-8022 plus light, KBrO3, 4-nitroquinoline-1-oxide, Na2Cr2O7 and ferric nitrilotriacetate as possible assay controls. A subsequent assessment of these compounds for generating cryopreserved assay controls in mononuclear blood cells showed that Ro19-8022 plus light, KBrO3 and 4-nitroquinoline-1-oxide provided suitable assay controls. We recommend these compounds as comet assay controls for oxidatively damaged DNA.


Assuntos
Ensaio Cometa/métodos , Ensaio Cometa/normas , DNA Glicosilases/metabolismo , DNA-Formamidopirimidina Glicosilase/metabolismo , Animais , Dano ao DNA , Reparo do DNA , Monitoramento Ambiental/métodos , Monitoramento Ambiental/normas , Humanos , Padrões de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
4.
Crit Rev Toxicol ; 46(5): 437-76, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27028752

RESUMO

Exposure to particulate matter (PM) from traffic vehicles is hazardous to the vascular system, leading to clinical manifestations and mortality due to ischemic heart disease. By analogy, nanomaterials may also be associated with the same outcomes. Here, the effects of exposure to PM from ambient air, diesel exhaust and certain nanomaterials on atherosclerosis and vasomotor function in animals have been assessed. The majority of studies have used pulmonary exposure by inhalation or instillation, although there are some studies on non-pulmonary routes such as the gastrointestinal tract. Airway exposure to air pollution particles and nanomaterials is associated with similar effects on atherosclerosis progression, augmented vasoconstriction and blunted vasorelaxation responses in arteries, whereas exposure to diesel exhaust is associated with lower responses. At present, there is no convincing evidence of dose-dependent effects across studies. Oxidative stress and inflammation have been observed in the arterial wall of PM-exposed animals with vasomotor dysfunction or plaque progression. From the data, it is evident that pulmonary and systemic inflammation does not seem to be necessary for these vascular effects to occur. Furthermore, there is inconsistent evidence with regard to altered plasma lipid profile and systemic inflammation as a key step in vasomotor dysfunction and progression of atherosclerosis in PM-exposed animals. In summary, the results show that certain nanomaterials, including TiO2, carbon black and carbon nanotubes, have similar hazards to the vascular system as combustion-derived PM.


Assuntos
Aterosclerose/induzido quimicamente , Nanoestruturas/toxicidade , Material Particulado/toxicidade , Animais , Aterosclerose/fisiopatologia , Humanos , Material Particulado/intoxicação , Sistema Vasomotor/efeitos dos fármacos , Sistema Vasomotor/fisiopatologia
5.
Mutagenesis ; 30(1): 67-83, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25527730

RESUMO

Exposure to ambient air particles is associated with elevated levels of DNA strand breaks (SBs) and endonuclease III, formamidopyrimidine DNA glycosylase (FPG) and oxoguanine DNA glycosylase-sensitive sites in cell cultures, animals and humans. In both animals and cell cultures, increases in SB and in oxidatively damaged DNA are seen after exposure to a range of engineered nanomaterials (ENMs), including carbon black, carbon nanotubes, fullerene C60, ZnO, silver and gold. Exposure to TiO2 has generated mixed data with regard to SB and oxidatively damaged DNA in cell cultures. Nanosilica does not seem to be associated with generation of FPG-sensitive sites in cell cultures, while large differences in SB generation between studies have been noted. Single-dose airway exposure to nanosized carbon black and multi-walled carbon nanotubes in animal models seems to be associated with elevated DNA damage levels in lung tissue in comparison to similar exposure to TiO2 and fullerene C60. Oral exposure has been associated with augmented DNA damage levels in cells of internal organs, although the doses have been typically very high. Intraveneous and intraperitoneal injection of ENMs have shown contradictory results dependent on the type of ENM and dose in each set of experiments. In conclusion, the exposure to both combustion-derived particles and ENMs is associated with increased levels of DNA damage in the comet assay. Particle size, composition and crystal structure of ENM are considered important determinants of toxicity, whereas their combined contributions to genotoxicity in the comet assay are yet to be thoroughly investigated.


Assuntos
Poluição do Ar/análise , Ensaio Cometa/métodos , Dano ao DNA/genética , Ecotoxicologia/métodos , Exposição Ambiental , Nanoestruturas/toxicidade , Material Particulado/toxicidade , Animais , Tamanho da Partícula
6.
Arch Toxicol ; 88(11): 1939-64, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25212906

RESUMO

The development of products containing carbon nanotubes (CNTs) is a major achievement of nanotechnology, although concerns regarding risk of toxic effects linger if the hazards associated with these materials are not thoroughly investigated. Exposure to CNTs has been associated with depletion of antioxidants, increased intracellular production of reactive oxygen species and pro-inflammatory signaling in cultured cells with primary function in the immune system as well as epithelial, endothelial and stromal cells. Pre-treatment with antioxidants has been shown to attenuate these effects, indicating a dependency of oxidative stress on cellular responses to CNT exposure. CNT-mediated oxidative stress in cell cultures has been associated with elevated levels of lipid peroxidation products and oxidatively damaged DNA. Investigations of oxidative stress endpoints in animal studies have utilized pulmonary, gastrointestinal, intravenous and intraperitoneal exposure routes, documenting elevated levels of lipid peroxidation products and oxidatively damaged DNA nucleobases especially in the lungs and liver, which to some extent occur concomitantly with altered levels of components in the antioxidant defense system (glutathione, superoxide dismutase or catalase). CNTs are biopersistent high aspect ratio materials, and some are rigid with lengths that lead to frustrated phagocytosis and pleural accumulation. There is accumulating evidence showing that pulmonary exposure to CNTs is associated with fibrosis and neoplastic changes in the lungs, and cardiovascular disease. As oxidative stress and inflammation responses are implicated in the development of these diseases, converging lines of evidence indicate that exposure to CNTs is associated with increased risk of cardiopulmonary diseases through generation of a pro-inflammatory and pro-oxidant milieu in the lungs.


Assuntos
Antioxidantes/metabolismo , Nanotubos de Carbono/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/fisiopatologia , Dano ao DNA/efeitos dos fármacos , Humanos , Inflamação/induzido quimicamente , Inflamação/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Pneumopatias/induzido quimicamente , Pneumopatias/fisiopatologia , Nanotecnologia , Espécies Reativas de Oxigênio/metabolismo
7.
Environ Toxicol Pharmacol ; 107: 104413, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485102

RESUMO

Carbon nanotubes (CNTs) vary in physicochemical properties which makes risk assessment challenging. Mice were pulmonary exposed to 26 well-characterized CNTs using the same experimental design and followed for one day, 28 days or 3 months. This resulted in a unique dataset, which was used to identify physicochemical predictors of pulmonary inflammation and systemic acute phase response. MWCNT diameter and SWCNT specific surface area were predictive of lower and higher neutrophil influx, respectively. Manganese and iron were shown to be predictive of higher neutrophil influx at day 1 post-exposure, whereas nickel content interestingly was predictive of lower neutrophil influx at all three time points and of lowered acute phase response at day 1 and 3 months post-exposure. It was not possible to separate effects of properties such as specific surface area and length in the multiple regression analyses due to co-variation.


Assuntos
Nanotubos de Carbono , Pneumonia , Camundongos , Animais , Nanotubos de Carbono/toxicidade , Nanotubos de Carbono/química , Reação de Fase Aguda , Líquido da Lavagem Broncoalveolar/química , Pulmão , Pneumonia/induzido quimicamente , Camundongos Endogâmicos C57BL
8.
Crit Rev Toxicol ; 43(2): 96-118, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23346980

RESUMO

Exposure to combustion-derived particles, quartz and asbestos is associated with increased levels of oxidized and mutagenic DNA lesions. The aim of this survey was to critically assess the measurements of oxidatively damaged DNA as marker of particle-induced genotoxicity in animal tissues. Publications based on non-optimal assays of 8-oxo-7,8-dihydroguanine by antibodies and/or unrealistically high levels of 8-oxo-7,8-dihydroguanine (suggesting experimental problems due to spurious oxidation of DNA) reported more induction of DNA damage after exposure to particles than did the publications based on optimal methods. The majority of studies have used single intracavitary administration or inhalation with dose rates exceeding the pulmonary overload threshold, resulting in cytotoxicity and inflammation. It is unclear whether this is relevant for the much lower human exposure levels. Still, there was linear dose-response relationship for 8-oxo-7,8-dihydroguanine in lung tissue without obvious signs of a threshold. The dose-response function was also dependent on chemical composition and other characteristics of the administered particles, whereas dependence on species and strain could not be equivocally determined. Roles of cytotoxicity or inflammation for oxidatively induced DNA damage could not be documented or refuted. Studies on exposure to particles in the gastrointestinal tract showed consistently increased levels of 8-oxo-7,8-dihydroguanine in the liver. Collectively, there is evidence from animal experimental models that both pulmonary and gastrointestinal tract exposure to particles are associated with elevated levels of oxidatively damaged DNA in the lung and internal organs. However, there is a paucity of studies on pulmonary exposure to low doses of particles that are relevant for hazard/risk assessment.


Assuntos
Dano ao DNA , Mutagênicos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Material Particulado/toxicidade , Animais , Amianto/análise , Amianto/toxicidade , Sobrevivência Celular/efeitos dos fármacos , DNA/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Guanina/análogos & derivados , Guanina/metabolismo , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Mutagênicos/química , Nanotubos de Carbono/toxicidade , Oxirredução , Material Particulado/química , Quartzo/análise , Quartzo/toxicidade
9.
Nanomaterials (Basel) ; 13(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36985953

RESUMO

Single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) are nanomaterials with one or multiple layers of carbon sheets. While it is suggested that various properties influence their toxicity, the specific mechanisms are not completely known. This study was aimed to determine if single or multi-walled structures and surface functionalization influence pulmonary toxicity and to identify the underlying mechanisms of toxicity. Female C57BL/6J BomTac mice were exposed to a single dose of 6, 18, or 54 µg/mouse of twelve SWCNTs or MWCNTs of different properties. Neutrophil influx and DNA damage were assessed on days 1 and 28 post-exposure. Genome microarrays and various bioinformatics and statistical methods were used to identify the biological processes, pathways and functions altered post-exposure to CNTs. All CNTs were ranked for their potency to induce transcriptional perturbation using benchmark dose modelling. All CNTs induced tissue inflammation. MWCNTs were more genotoxic than SWCNTs. Transcriptomics analysis showed similar responses across CNTs at the pathway level at the high dose, which included the perturbation of inflammatory, cellular stress, metabolism, and DNA damage responses. Of all CNTs, one pristine SWCNT was found to be the most potent and potentially fibrogenic, so it should be prioritized for further toxicity testing.

10.
Front Toxicol ; 4: 887135, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875696

RESUMO

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are formed as a result of natural cellular processes, intracellular signaling, or as adverse responses associated with diseases or exposure to oxidizing chemical and non-chemical stressors. The action of ROS and RNS, collectively referred to as reactive oxygen and nitrogen species (RONS), has recently become highly relevant in a number of adverse outcome pathways (AOPs) that capture, organize, evaluate and portray causal relationships pertinent to adversity or disease progression. RONS can potentially act as a key event (KE) in the cascade of responses leading to an adverse outcome (AO) within such AOPs, but are also known to modulate responses of events along the AOP continuum without being an AOP event itself. A substantial discussion has therefore been undertaken in a series of workshops named "Mystery or ROS" to elucidate the role of RONS in disease and adverse effects associated with exposure to stressors such as nanoparticles, chemical, and ionizing and non-ionizing radiation. This review introduces the background for RONS production, reflects on the direct and indirect effects of RONS, addresses the diversity of terminology used in different fields of research, and provides guidance for developing a harmonized approach for defining a common event terminology within the AOP developer community.

11.
Chem Res Toxicol ; 24(2): 168-84, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21235221

RESUMO

Combustion of biomass and wood for residential heating and/or cooking contributes substantially to both ambient air and indoor levels of particulate matter (PM). Toxicological characterization of ambient air PM, especially related to traffic, is well advanced, whereas the toxicology of wood smoke PM (WSPM) is poorly assessed. We assessed a wide spectrum of toxicity end points in human A549 lung epithelial and THP-1 monocytic cell lines comparing WSPM from high or low oxygen combustion and ambient PM collected in a village with many operating wood stoves and from a rural background area. In both cell types, all extensively characterized PM samples (1.25-100 µg/mL) induced dose-dependent formation of reactive oxygen species and DNA damage in terms of strand breaks and formamidopyrimidine DNA glycosylase sites assessed by the comet assay with WSPM being most potent. The WSPM contained more polycyclic aromatic hydrocarbons (PAH), less soluble metals, and expectedly also had a smaller particle size than PM collected from ambient air. All four types of PM combined increased the levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine dose-dependently in A549 cells, whereas there was no change in the levels of etheno-adducts or bulky DNA adducts. Furthermore, mRNA expression of the proinflammatory genes monocyte chemoattractant protein-1, interleukin-8, and tumor necrosis factor-α as well as the oxidative stress gene heme oxygenase-1 was upregulated in the THP-1 cells especially by WSPM and ambient PM sampled from the wood stove area. Expression of oxoguanine glycosylase 1, lymphocyte function-associated antigen-1, and interleukin-6 did not change. We conclude that WSPM has small particle size, high level of PAH, low level of water-soluble metals, and produces high levels of free radicals, DNA damage as well as inflammatory and oxidative stress response gene expression in cultured human cells.


Assuntos
Dano ao DNA/efeitos dos fármacos , Inflamação/induzido quimicamente , Estresse Oxidativo/efeitos dos fármacos , Fumaça/efeitos adversos , Madeira/química , Morte Celular/efeitos dos fármacos , Linhagem Celular , Expressão Gênica/efeitos dos fármacos , Humanos , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo , Fumaça/análise
12.
Crit Rev Toxicol ; 41(4): 339-68, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21345153

RESUMO

The development and use of nanoparticles have alerted toxicologists and regulators to issues of safety testing. By analogy with ambient air particles, it can be expected that small doses are associated with a small increase in risk of cardiovascular diseases, possibly through oxidative stress and inflammatory pathways. We have assessed the effect of exposure to particulate matter on progression of atherosclerosis and vasomotor function in humans, animals, and ex vivo experimental systems. The type of particles that have been tested in these systems encompass TiO(2), carbon black, fullerene C(60), single-walled carbon nanotubes, ambient air particles, and diesel exhaust particles. Exposure to ambient air particles is associated with accelerated progression of atherosclerosis and vasomotor dysfunction in both healthy and susceptible animal models and humans at risk of developing cardiovascular diseases. The vasomotor dysfunction includes increased vasoconstriction as well as reduced endothelium-dependent vasodilatation; endothelium-independent vasodilatation is often unaffected indicating mainly endothelial dysfunction. Pulmonary exposure to TiO(2), carbon black, and engineered nanoparticles generate vasomotor dysfunction; the effect size is similar to that generated by combustion-derived particles, although the effect could depend on the exposure period and the administered dose, route, and mode. The relative risk associated with exposure to nanoparticles may be small compared to some traditional risk factors for cardiovascular diseases, but superimposed on these and possible exposure to large parts of the population it is a significant public health concern. Overall, assessment of vasomotor dysfunction and progression of atherosclerosis are promising tools for understanding the effects of particulate matter.


Assuntos
Poluentes Atmosféricos/toxicidade , Aterosclerose/epidemiologia , Material Particulado/toxicidade , Sistema Vasomotor/efeitos dos fármacos , Animais , Aterosclerose/patologia , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/patologia , Progressão da Doença , Humanos , Nanopartículas/toxicidade , Vasoconstrição/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Sistema Vasomotor/patologia
13.
Adv Mater ; 32(47): e2003913, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33073368

RESUMO

On a daily basis, people are exposed to a multitude of health-hazardous airborne particulate matter with notable deposition in the fragile alveolar region of the lungs. Hence, there is a great need for identification and prediction of material-associated diseases, currently hindered due to the lack of in-depth understanding of causal relationships, in particular between acute exposures and chronic symptoms. By applying advanced microscopies and omics to in vitro and in vivo systems, together with in silico molecular modeling, it is determined herein that the long-lasting response to a single exposure can originate from the interplay between the newly discovered nanomaterial quarantining and nanomaterial cycling between different lung cell types. This new insight finally allows prediction of the spectrum of lung inflammation associated with materials of interest using only in vitro measurements and in silico modeling, potentially relating outcomes to material properties for a large number of materials, and thus boosting safe-by-design-based material development. Because of its profound implications for animal-free predictive toxicology, this work paves the way to a more efficient and hazard-free introduction of numerous new advanced materials into our lives.


Assuntos
Simulação por Computador , Inalação , Pulmão/efeitos dos fármacos , Pulmão/patologia , Material Particulado/toxicidade , Doença Crônica , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Epitélio/patologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Pulmão/metabolismo , Tamanho da Partícula , Material Particulado/química , Material Particulado/metabolismo , Segurança , Testes de Toxicidade
14.
Mutat Res ; 674(1-2): 116-22, 2009 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-19041418

RESUMO

Genotoxic effects of traffic-generated particulate matter (PM) are well described, whereas little data are available on PM from combustion of biomass and wood, which contributes substantially to air pollution world wide. The aim of this study was to compare the genotoxicity of wood smoke particulate matter (WSPM), authentic traffic-generated particles, mineral PM and standard reference material (SRM2975) of diesel exhaust particles in human A549 lung epithelial and THP-1 monocytic cell lines. DNA damage was measured as strand breaks (SB) and formamidopyrimidine DNA glycosylase (FPG) sites by the comet assay, whereas cell cytotoxicity was determined as lactate dehydrogenase release. The exposure to WSPM generated SB and FPG sites in both cell lines at concentrations from 2.5 or 25 microg/ml, which were not cytotoxic. Compared to all other studied particles, WSPM generated greater responses in terms of both SB and FPG sites. Organic extracts of WSPM and SRM2975 elicited higher levels of SB than native and washed PM at 25 and 100 microg/ml, whereas assay saturation precluded reliable assessment of FPG sites. During a 6h post-exposure period, in which the medium with PM had been replaced by fresh medium, 60% of the DNA lesions generated by WSPM were removed. In conclusion, WSPM generated more DNA damage than traffic-generated PM per unit mass in human cell lines, possibly due to the high level of polycyclic aromatic hydrocarbons in WSPM. This suggests that exposure to WSPM might be more hazardous than PM collected from vehicle exhaust with respect to development of lung cancer.


Assuntos
Linhagem Celular , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Material Particulado/toxicidade , Fumaça/efeitos adversos , Linhagem Celular/efeitos dos fármacos , Linhagem Celular/metabolismo , Fracionamento Químico , Dano ao DNA/fisiologia , Humanos , L-Lactato Desidrogenase/metabolismo , Estresse Oxidativo/fisiologia , Fumaça/análise , Madeira/química
15.
Toxicol In Vitro ; 61: 104594, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31279906

RESUMO

The rapid expansion of the incorporation of nano-sized materials in consumer products overlaps with the necessity for high-throughput reliable screening tools for the identification of the potential hazardous properties of the nanomaterials. The ToxTracker assay (mechanism-based reporter assay based on embryonic stem cells that uses GFP-tagged biomarkers for detection of DNA damage, oxidative stress and general cellular stress) is one such tool, which could prove useful in the field of particle toxicology allowing for high throughput screening. Here, ToxTracker was utilised to evaluate the potential hazardous properties of two particulates currently used in the food industry (vegetable carbon (E153) and food-grade TiO2 (E171)). Due to the fact that ToxTracker is based on a stem cell format, it is crucial that the data generated is assessed for its suitability and comparability to more conventionally used relevant source of cells - in this case cells from the gastrointestinal tract and the liver. Therefore, the cell reporter findings were compared to data from traditional assays (cytotoxicity, anti-oxidant depletion and DNA damage) and tissue relevant cell types. The data showed E171 to be the most cytotoxic, decreased intracellular glutathione and the most significant with regards to genotoxic effects. The ToxTracker data showed comparability to conventional toxicity and oxidative stress assays; however, some discrepancies were evident between the findings from ToxTracker and the comet assay.


Assuntos
Aditivos Alimentares/toxicidade , Ensaios de Triagem em Larga Escala , Nanopartículas/toxicidade , Titânio/toxicidade , Testes de Toxicidade/métodos , Animais , Células CACO-2 , Dano ao DNA , Células-Tronco Embrionárias/efeitos dos fármacos , Indústria Alimentícia , Trato Gastrointestinal/citologia , Glutationa/metabolismo , Células Hep G2 , Humanos , Fígado/citologia , Camundongos , Estresse Oxidativo/efeitos dos fármacos
16.
Cancer Lett ; 266(1): 84-97, 2008 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-18367322

RESUMO

There is growing concern that air pollution exposure increases the risk of lung cancer. The mechanism of action is related to particle-induced oxidative stress and oxidation of DNA. Humans exposed to urban air with vehicle emissions have elevated levels of oxidized guanine bases in blood cells and urine. Animal experimental studies show that pulmonary and gastrointestinal exposure is associated with elevated levels of oxidized guanines in the lung and other organs. Collectively, there is evidence indicating that exposure to traffic-related air pollution particles is associated with oxidative damage to DNA and this might be associated with increased risk of cancer.


Assuntos
Poluição do Ar/efeitos adversos , Carcinógenos/toxicidade , Dano ao DNA , Neoplasias/induzido quimicamente , Estresse Oxidativo , Animais , Transformação Celular Neoplásica , Cobaias , Humanos , Camundongos , Oxirredução , Material Particulado/toxicidade , Ratos , Emissões de Veículos/toxicidade
17.
Mutagenesis ; 23(3): 223-31, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18326868

RESUMO

The comet assay is popular for assessments of genotoxicity, but the comparison of results between studies is challenging because of differences in experimental procedures and reports of DNA damage in different units. We investigated the variation of DNA damage in mononuclear blood cells (MNBCs) measured by the comet assay with focus on the variation related to alkaline unwinding and electrophoresis time, number of cells scored, as well as the putative benefits of transforming the primary end points to common units by the use of reference standards and calibration curves. Eight experienced investigators scored pre-made slides of nuclei differently, but each investigator scored constantly over time. Scoring of 200 nuclei per treatment was associated with the lowest residual variation. Alkaline unwinding for 20 or 40 min and electrophoresis for 20 or 30 min yielded different dose-response relationships of cells exposed to gamma-radiation and it was possible to reduce the variation in oxidized purines in MNBCs from humans by adjusting the level of lesions with protocol-specific calibration curves. However, there was a difference in the level of DNA damage measured by different investigators and this variation could not be reduced by use of investigator-specific calibration curves. The mean numbers of lesions per 10(6) bp in MNBCs from seven humans were 0.23 [95% confidence interval (CI): 0.14-0.33] and 0.31 (95% CI: 0.20-0.55) for strand breaks (SBs) and oxidized guanines, respectively. In conclusion, our results indicate that inter-investigator difference in scoring is a strong determinant of DNA damage levels measured by the comet assay.


Assuntos
Ensaio Cometa/estatística & dados numéricos , Ensaio Cometa/normas , Dano ao DNA , DNA/análise , Estresse Oxidativo , Núcleo Celular/química , Núcleo Celular/ultraestrutura , Interpretação Estatística de Dados , Humanos , Leucócitos Mononucleares/química , Leucócitos Mononucleares/ultraestrutura , Variações Dependentes do Observador
18.
Mutat Res ; 637(1-2): 49-55, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17764705

RESUMO

The gastrointestinal route of exposure to particulate matter is important because particles are ingested via contaminated foods and inhaled particles are swallowed when removed from the airways by the mucociliary clearance system. We investigated the effect of an intragastric administration by oral gavage of diesel exhaust particles (DEP) in terms of DNA damage, oxidative stress and DNA repair in colon epithelial cells, liver, and lung of rats. Eight rats per group were exposed to Standard Reference Material 2975 at 0.064 or 0.64 mg/kg bodyweight for 6 and 24 h. Increased levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine lesions were observed at the highest dose after 6 and 24 h in all three organs. 8-Oxo-7,8-dihydro-2'-deoxyguanosine is repaired by oxoguanine DNA glycosylase 1 (OGG1); upregulation of this repair system was observed as elevated pulmonary OGG1 mRNA levels after 24 h at both doses of DEP, but not in the colon and liver. A general response of the antioxidant defence system is further indicated by elevated levels of heme oxygenase 1 mRNA in the liver and lung 24 h after administration. The level of bulky DNA adducts was increased in liver and lung at both doses after 6 and 24h (DNA adducts in colon epithelium were not investigated). In summary, DEP administered via the gastrointestinal tract at low doses relative to ambient exposure generates DNA damage and increase the expression of defence mechanisms in organs such as the lung and liver. The oral exposure route should be taken into account in risk assessment of particulate matter.


Assuntos
Material Particulado/toxicidade , Emissões de Veículos/toxicidade , Administração Oral , Animais , Colo/efeitos dos fármacos , Adutos de DNA/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , DNA Glicosilases/metabolismo , Reparo do DNA/efeitos dos fármacos , Heme Oxigenase (Desciclizante)/metabolismo , Fígado/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Masculino , Mutagênicos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Endogâmicos F344 , Espécies Reativas de Oxigênio
19.
Mutat Res ; 642(1-2): 37-42, 2008 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-18495177

RESUMO

Particulate matter from wood smoke may cause health effects through generation of oxidative stress with resulting damage to DNA. We investigated oxidatively damaged DNA and related repair capacity in peripheral blood mononuclear cells (PBMC) and measured the urinary excretion of repair products after controlled short-term exposure of human volunteers to wood smoke. Thirteen healthy adults were exposed first to clean air and then to wood smoke in a chamber during 4h sessions, 1 week apart. Blood samples were taken 3h after exposure and on the following morning, and urine was collected after exposure, from bedtime until the next morning. We measured the levels of DNA strand breaks (SB), oxidized purines as formamidopyrimidine-DNA-glycosylase (FPG) sites and activity of oxoguanine glycosylase 1 (hOGG1) in PBMC by the comet assay, whereas mRNA levels of hOGG1, nucleoside diphosphate linked moiety X-type motif 1 (hNUDT1) and heme oxygenase 1 (hHO1) were determined by real-time RT-PCR. The excretion of 8-oxo-7,8-dihydro-oxoguanine (8-oxoGua) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in urine was measured by high performance liquid chromatography purification followed by gas chromatography with mass spectrometry. The morning following exposure to wood smoke the PBMC levels of SB were significantly decreased and the mRNA levels of hOGG1 significantly increased. FPG sites, hOGG1 activity, expression of hNUDT1 and hHO1, urinary excretion of 8-oxodG and 8-oxoGua did not change significantly. Our findings support that exposure to wood smoke causes systemic effects, although we could not demonstrate genotoxic effects, possibly explained by enhanced repair and timing of sampling.


Assuntos
Dano ao DNA , Reparo do DNA , Estresse Oxidativo , Fumaça/efeitos adversos , Madeira , Poluentes Atmosféricos/efeitos adversos , DNA Glicosilases/sangue , Humanos , Leucócitos Mononucleares/química
20.
Part Fibre Toxicol ; 5: 6, 2008 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-18397523

RESUMO

BACKGROUND: Exposure to air pollution particles has been acknowledged to be associated with excess generation of oxidative damage to DNA in experimental model systems and humans. The use of standard reference material (SRM), such as SRM1650 and SRM2975, is advantageous because experiments can be reproduced independently, but exposure to such samples may not mimic the effects observed after exposure to authentic air pollution particles. This study was designed to compare the DNA oxidizing effects of authentic street particles with SRM1650 and SRM2975. The authentic street particles were collected at a traffic intensive road in Copenhagen, Denmark. RESULTS: All of the particles generated strand breaks and oxidized purines in A549 lung epithelial cells in a dose-dependent manner and there were no overt differences in their potency. The exposures also yielded dose-dependent increase of cytotoxicity (as lactate dehydrogenase release) and reduced colony forming ability with slightly stronger cytotoxicity of SRM1650 than of the other particles. In contrast, only the authentic street particles were able to generate 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in calf thymus DNA, which might be due to the much higher level of transition metals. CONCLUSION: Authentic street particles and SRMs differ in their ability to oxidize DNA in a cell-free environment, whereas cell culture experiments indicate that the particle preparations elicit a similar alteration of the level of DNA damage and small differences in cytotoxicity. Although it cannot be ruled out that SRMs and authentic street particles might elicit different effects in animal experimental models, this study indicates that on the cellular level, SRM1650 and SRM2975 are suitable surrogate samples for the study of authentic street particles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA