RESUMO
We report a study of the peak-effect phase diagram of a strongly disordered type-II superconductor V-21 at. %Ti using ac magnetic susceptibility and small-angle neutron scattering (SANS). In this system, the peak effect appears only at fields higher than 3.4 T. The sample is characterized by strong atomic disorder. Vortex states with field-cooled thermal histories show that both deep in the mixed state, as well as close to the peak effect, there exist no long-range orientationally ordered vortex lattices. The SANS scattering radial widths reveal vortex states ordered in the sub-mum scale. We conjecture that the peak effect in this system is a remnant of the Bragg glass disordering transition, but occurs on submicron length scales due to the presence of strong atomic disorder on larger length scales.
RESUMO
We report small angle neutron scattering rocking-curve measurements of the flux line lattices in the peak effect region in a niobium single crystal. It is found that upon cooling in a magnetic field, the transverse orientational order as well as the longitudinal translational order grow rapidly with decreasing temperature, indicating diminishing population of defects in the ordering vortex matter. Surprisingly, during subsequent warming, longitudinal order increases with increasing temperature, presumably due to annealing of flux-lattice screw dislocations. The observed behavior indicates the gradual emergence of the Bragg glass phase from entangled vortex matter in the peak effect region.