Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Blood ; 142(6): 574-588, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37192295

RESUMO

Tyrosine kinase inhibitors (TKIs) are very effective in treating chronic myelogenous leukemia (CML), but primitive, quiescent leukemia stem cells persist as a barrier to the cure. We performed a comprehensive evaluation of metabolic adaptation to TKI treatment and its role in CML hematopoietic stem and progenitor cell persistence. Using a CML mouse model, we found that glycolysis, glutaminolysis, the tricarboxylic acid cycle, and oxidative phosphorylation (OXPHOS) were initially inhibited by TKI treatment in CML-committed progenitors but were restored with continued treatment, reflecting both selection and metabolic reprogramming of specific subpopulations. TKI treatment selectively enriched primitive CML stem cells with reduced metabolic gene expression. Persistent CML stem cells also showed metabolic adaptation to TKI treatment through altered substrate use and mitochondrial respiration maintenance. Evaluation of transcription factors underlying these changes helped detect increased HIF-1 protein levels and activity in TKI-treated stem cells. Treatment with an HIF-1 inhibitor in combination with TKI treatment depleted murine and human CML stem cells. HIF-1 inhibition increased mitochondrial activity and reactive oxygen species (ROS) levels, reduced quiescence, increased cycling, and reduced the self-renewal and regenerating potential of dormant CML stem cells. We, therefore, identified the HIF-1-mediated inhibition of OXPHOS and ROS and maintenance of CML stem cell dormancy and repopulating potential as a key mechanism of CML stem cell adaptation to TKI treatment. Our results identify a key metabolic dependency in CML stem cells persisting after TKI treatment that can be targeted to enhance their elimination.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Proteínas Tirosina Quinases , Camundongos , Humanos , Animais , Proteínas Tirosina Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Células-Tronco Neoplásicas/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Resistencia a Medicamentos Antineoplásicos
2.
J Mol Cell Cardiol ; 186: 31-44, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37979443

RESUMO

Ischemia/reperfusion (I/R) injury after revascularization contributes ∼50% of infarct size and causes heart failure, for which no established clinical treatment exists. ß-hydroxybutyrate (ß-OHB), which serves as both an energy source and a signaling molecule, has recently been reported to be cardioprotective when administered immediately before I/R and continuously after reperfusion. This study aims to determine whether administering ß-OHB at the time of reperfusion with a single dose can alleviate I/R injury and, if so, to define the mechanisms involved. We found plasma ß-OHB levels were elevated during ischemia in STEMI patients, albeit not to myocardial protection level, and decreased after revascularization. In mice, compared with normal saline, ß-OHB administrated at reperfusion reduced infarct size (by 50%) and preserved cardiac function, as well as activated autophagy and preserved mtDNA levels in the border zone. Our treatment with one dose ß-OHB reached a level achievable with fasting and strenuous physical activity. In neonatal rat ventricular myocytes (NRVMs) subjected to I/R, ß-OHB at physiologic level reduced cell death, increased autophagy, preserved mitochondrial mass, function, and membrane potential, in addition to attenuating reactive oxygen species (ROS) levels. ATG7 knockdown/knockout abolished the protective effects of ß-OHB observed both in vitro and in vivo. Mechanistically, ß-OHB's cardioprotective effects were associated with inhibition of mTOR signaling. In conclusion, ß-OHB, when administered at reperfusion, reduces infarct size and maintains mitochondrial homeostasis by increasing autophagic flux (potentially through mTOR inhibition). Since ß-OHB has been safely tested in heart failure patients, it may be a viable therapeutic to reduce infarct size in STEMI patients.


Assuntos
Insuficiência Cardíaca , Traumatismo por Reperfusão Miocárdica , Infarto do Miocárdio com Supradesnível do Segmento ST , Camundongos , Ratos , Animais , Humanos , Masculino , Ácido 3-Hidroxibutírico/farmacologia , Ácido 3-Hidroxibutírico/metabolismo , Ácido 3-Hidroxibutírico/uso terapêutico , Infarto do Miocárdio com Supradesnível do Segmento ST/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Mitocôndrias/metabolismo , Autofagia , Serina-Treonina Quinases TOR/metabolismo , Reperfusão , Insuficiência Cardíaca/metabolismo
3.
EMBO J ; 39(13): e104073, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32432379

RESUMO

Respirometry is the gold standard measurement of mitochondrial oxidative function, as it reflects the activity of the electron transport chain complexes working together. However, the requirement for freshly isolated mitochondria hinders the feasibility of respirometry in multi-site clinical studies and retrospective studies. Here, we describe a novel respirometry approach suited for frozen samples by restoring electron transfer components lost during freeze/thaw and correcting for variable permeabilization of mitochondrial membranes. This approach preserves 90-95% of the maximal respiratory capacity in frozen samples and can be applied to isolated mitochondria, permeabilized cells, and tissue homogenates with high sensitivity. We find that primary changes in mitochondrial function, detected in fresh tissue, are preserved in frozen samples years after collection. This approach will enable analysis of the integrated function of mitochondrial Complexes I to IV in one measurement, collected at remote sites or retrospectively in samples residing in tissue biobanks.


Assuntos
Criopreservação , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Consumo de Oxigênio , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Masculino , Camundongos
4.
J Immunol ; 209(5): 896-906, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35914835

RESUMO

Protein kinase CK2 is a serine/threonine kinase composed of two catalytic subunits (CK2α and/or CK2α') and two regulatory subunits (CK2ß). CK2 promotes cancer progression by activating the NF-κB, PI3K/AKT/mTOR, and JAK/STAT pathways, and also is critical for immune cell development and function. The potential involvement of CK2 in CD8+ T cell function has not been explored. We demonstrate that CK2 protein levels and kinase activity are enhanced upon mouse CD8+ T cell activation. CK2α deficiency results in impaired CD8+ T cell activation and proliferation upon TCR stimulation. Furthermore, CK2α is involved in CD8+ T cell metabolic reprogramming through regulating the AKT/mTOR pathway. Lastly, using a mouse Listeria monocytogenes infection model, we demonstrate that CK2α is required for CD8+ T cell expansion, maintenance, and effector function in both primary and memory immune responses. Collectively, our study implicates CK2α as an important regulator of mouse CD8+ T cell activation, metabolic reprogramming, and differentiation both in vitro and in vivo.


Assuntos
Caseína Quinase II , NF-kappa B , Linfócitos T CD8-Positivos/metabolismo , Caseína Quinase II/metabolismo , Fosfatidilinositol 3-Quinases , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas c-akt , Receptores de Antígenos de Linfócitos T , Serina , Linfócitos T/metabolismo , Serina-Treonina Quinases TOR
5.
Nitric Oxide ; 130: 22-35, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36414197

RESUMO

Limited O2 availability can decrease essential processes in energy metabolism. However, cancers have developed distinct metabolic adaptations to these conditions. For example, glutaminolysis can maintain energy metabolism and hypoxia signaling. Additionally, it has been observed that nitric oxide (NO) possesses concentration-dependent, biphasic effects in cancer. NO has potent anti-tumor effects through modulating events such as angiogenesis and metastasis at low physiological concentrations and inducing cell death at higher concentrations. In this study, Ewing Sarcoma cells (A-673), MIA PaCa, and SKBR3 cells were treated with DetaNONOate (DetaNO) in a model of hypoxia (1% O2) and reoxygenation (21% O2). All 3 cell types showed NO-dependent inhibition of cellular O2 consumption which was enhanced as O2-tension decreased. L-Gln depletion suppressed the mitochondrial response to decreasing O2 tension in all 3 cell types and resulted in inhibition of Complex I activity. In A-673 cells the O2 tension dependent change in mitochondrial O2 consumption and increase in glycolysis was dependent on the presence of L-Gln. The response to hypoxia and Complex I activity were restored by α-ketoglutarate. NO exposure resulted in the A-673 cells showing greater sensitivity to decreasing O2 tension. Under conditions of L-Gln depletion, NO restored HIF-1α levels and the mitochondrial response to O2 tension possibly through the increase of 2-hydroxyglutarate. NO also resulted in suppression of cellular bioenergetics and further inhibition of Complex I which was not rescued by α-ketoglutarate. Taken together these data suggest that NO modulates the mitochondrial response to O2 differentially in the absence and presence of L-Gln. These data suggest a combination of metabolic strategies targeting glutaminolysis and Complex I in cancer cells.


Assuntos
Neoplasias , Óxido Nítrico , Humanos , Óxido Nítrico/farmacologia , Glutamina/farmacologia , Glutamina/metabolismo , Ácidos Cetoglutáricos , Hipóxia/metabolismo , Metabolismo Energético/fisiologia
6.
Lab Invest ; 101(11): 1467-1474, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34504306

RESUMO

The mortality rates among patients who initially survive sepsis are, in part, associated with a high risk of secondary lung infections and respiratory failure. Given that phagolysosomes are important for intracellular killing of pathogenic microbes, we investigated how severe lung infections associated with post-sepsis immunosuppression affect phagolysosome biogenesis. In mice with P. aeruginosa-induced pneumonia, we found a depletion of both phagosomes and lysosomes, as evidenced by decreased amounts of microtubule associated protein light chain 3-II (LC3-II) and lysosomal-associated membrane protein (LAMP1). We also found a loss of transcription factor E3 (TFE3) and transcription factor EB (TFEB), which are important activators for transcription of genes encoding autophagy and lysosomal proteins. These events were associated with increased expression of ZKSCAN3, a repressor for transcription of genes encoding autophagy and lysosomal proteins. Zkscan3-/- mice had increased expression of genes involved in the autophagy-lysosomal pathway along with enhanced killing of P. aeruginosa in the lungs, as compared to wild-type mice. These findings highlight the involvement of ZKSCAN3 in response to severe lung infection, including susceptibility to secondary bacterial infections due to immunosuppression.


Assuntos
Fagossomos/fisiologia , Pneumonia Bacteriana/complicações , Infecções por Pseudomonas/complicações , Sepse/imunologia , Fatores de Transcrição/deficiência , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Tolerância Imunológica , Pulmão/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Pneumonia Bacteriana/metabolismo , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa , Sepse/microbiologia
7.
Am J Physiol Heart Circ Physiol ; 318(6): H1487-H1508, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32357113

RESUMO

Cell-autonomous circadian clocks have emerged as temporal orchestrators of numerous biological processes. For example, the cardiomyocyte circadian clock modulates transcription, translation, posttranslational modifications, ion homeostasis, signaling cascades, metabolism, and contractility of the heart over the course of the day. Circadian clocks are composed of more than 10 interconnected transcriptional modulators, all of which have the potential to influence the cardiac transcriptome (and ultimately cardiac processes). These transcriptional modulators include BMAL1 and REV-ERBα/ß; BMAL1 induces REV-ERBα/ß, which in turn feeds back to inhibit BMAL1. Previous studies indicate that cardiomyocyte-specific BMAL1-knockout (CBK) mice exhibit a dysfunctional circadian clock (including decreased REV-ERBα/ß expression) in the heart associated with abnormalities in cardiac mitochondrial function, metabolism, signaling, and contractile function. Here, we hypothesized that decreased REV-ERBα/ß activity is responsible for distinct phenotypical alterations observed in CBK hearts. To test this hypothesis, CBK (and littermate control) mice were administered with the selective REV-ERBα/ß agonist SR-9009 (100 mg·kg-1·day-1 for 8 days). SR-9009 administration was sufficient to normalize cardiac glycogen synthesis rates, cardiomyocyte size, interstitial fibrosis, and contractility in CBK hearts (without influencing mitochondrial complex activities, nor normalizing substrate oxidation and Akt/mTOR/GSK3ß signaling). Collectively, these observations highlight a role for REV-ERBα/ß as a mediator of a subset of circadian clock-controlled processes in the heart.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Miocárdio/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/agonistas , Fatores de Transcrição ARNTL/metabolismo , Animais , Ritmo Circadiano/efeitos dos fármacos , Expressão Gênica , Regulação da Expressão Gênica , Coração/efeitos dos fármacos , Camundongos , Camundongos Knockout , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Pirrolidinas/farmacologia , Tiofenos/farmacologia
8.
Blood ; 132(11): 1180-1192, 2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30018077

RESUMO

AMP-activated protein kinase (AMPK) α1 is activated in platelets on thrombin or collagen stimulation, and as a consequence, phosphorylates and inhibits acetyl-CoA carboxylase (ACC). Because ACC is crucial for the synthesis of fatty acids, which are essential for platelet activation, we hypothesized that this enzyme plays a central regulatory role in platelet function. To investigate this, we used a double knock-in (DKI) mouse model in which the AMPK phosphorylation sites Ser79 on ACC1 and Ser212 on ACC2 were mutated to prevent AMPK signaling to ACC. Suppression of ACC phosphorylation promoted injury-induced arterial thrombosis in vivo and enhanced thrombus growth ex vivo on collagen-coated surfaces under flow. After collagen stimulation, loss of AMPK-ACC signaling was associated with amplified thromboxane generation and dense granule secretion. ACC DKI platelets had increased arachidonic acid-containing phosphatidylethanolamine plasmalogen lipids. In conclusion, AMPK-ACC signaling is coupled to the control of thrombosis by specifically modulating thromboxane and granule release in response to collagen. It appears to achieve this by increasing platelet phospholipid content required for the generation of arachidonic acid, a key mediator of platelet activation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Acetil-CoA Carboxilase/metabolismo , Plaquetas/enzimologia , Transdução de Sinais , Trombose/enzimologia , Proteínas Quinases Ativadas por AMP/genética , Acetil-CoA Carboxilase/genética , Animais , Plaquetas/patologia , Técnicas de Introdução de Genes , Camundongos , Camundongos Knockout , Fosforilação/genética , Trombose/genética , Trombose/patologia
9.
J Biol Chem ; 293(4): 1218-1228, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29222329

RESUMO

Myofibroblasts participate in physiological wound healing and pathological fibrosis. Myofibroblast differentiation is characterized by the expression of α-smooth muscle actin and extracellular matrix proteins and is dependent on metabolic reprogramming. In this study, we explored the role of glutaminolysis and metabolites of TCA in supporting myofibroblast differentiation. Glutaminolysis converts Gln into α-ketoglutarate (α-KG), a critical intermediate in the TCA cycle. Increases in the steady-state concentrations of TCA cycle metabolites including α-KG, succinate, fumarate, malate, and citrate were observed in TGF-ß1-differentiated myofibroblasts. The concentration of glutamate was also increased in TGF-ß1-differentiated myofibroblasts compared with controls, whereas glutamine levels were decreased, suggesting enhanced glutaminolysis. This was associated with TGF-ß1-induced expression of the glutaminase (GLS) isoform, GLS1, which converts Gln into glutamate, at both the mRNA and protein levels. The stimulation of GLS1 expression by TGF-ß1 was dependent on both SMAD3 and p38 mitogen-activated protein kinase activation. Depletion of extracellular Gln prevented TGF-ß1-induced myofibroblast differentiation. The removal of extracellular Gln postmyofibroblast differentiation decreased the expression of the profibrotic markers fibronectin and hypoxia-inducible factor-1α and reversed TGF-ß1-induced metabolic reprogramming. Silencing of GLS1 expression, in the presence of Gln, abrogated TGF-ß1-induced expression of profibrotic markers. Treatment of GLS1-deficient myofibroblasts with exogenous glutamate or α-KG restored TGF-ß1-induced expression of profibrotic markers in GLS1-deficient myofibroblasts. Together, these data demonstrate that glutaminolysis is a critical component of myofibroblast metabolic reprogramming that regulates myofibroblast differentiation.


Assuntos
Diferenciação Celular , Miofibroblastos/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Linhagem Celular , Glutaminase/genética , Glutaminase/metabolismo , Glutamina/genética , Glutamina/metabolismo , Humanos , Ácidos Cetoglutáricos/metabolismo , Miofibroblastos/citologia , Proteína Smad3/genética , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
Am J Physiol Renal Physiol ; 316(3): F414-F425, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30566001

RESUMO

Deficiency in polycystin 1 triggers specific changes in energy metabolism. To determine whether defects in other human cystoproteins have similar effects, we studied extracellular acidification and glucose metabolism in human embryonic kidney (HEK-293) cell lines with polycystic kidney and hepatic disease 1 ( PKHD1) and polycystic kidney disease (PKD) 2 ( PKD2) truncating defects along multiple sites of truncating mutations found in patients with autosomal recessive and dominant PKDs. While neither the PKHD1 or PKD2 gene mutations nor their position enhanced cell proliferation rate in our cell line models, truncating mutations in these genes progressively increased overall extracellular acidification over time ( P < 0.001 for PKHD1 and PKD2 mutations). PKHD1 mutations increased nonglycolytic acidification rate (1.19 vs. 1.03, P = 0.002), consistent with an increase in tricarboxylic acid cycle activity or breakdown of intracellular glycogen. In addition, they increased basal and ATP-linked oxygen consumption rates [7.59 vs. 5.42 ( P = 0.015) and 4.55 vs. 2.98 ( P = 0.004)]. The PKHD1 and PKD2 mutations also altered mitochondrial morphology, resembling the effects of polycystin 1 deficiency. Together, these data suggest that defects in major PKD genes trigger changes in mitochondrial energy metabolism. After validation in in vivo models, these initial observations would indicate potential benefits of targeting energy metabolism in the treatment of PKDs.


Assuntos
Metabolismo Energético/genética , Glucose/metabolismo , Proteínas Quinases/genética , Receptores de Superfície Celular/genética , Proliferação de Células/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes , Células HEK293 , Humanos , Mutação , Proteína Quinase D2 , Proteínas Quinases/metabolismo , Receptores de Superfície Celular/metabolismo
11.
Biol Chem ; 401(1): 3-29, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31815377

RESUMO

It is now becoming clear that human metabolism is extremely plastic and varies substantially between healthy individuals. Understanding the biochemistry that underlies this physiology will enable personalized clinical interventions related to metabolism. Mitochondrial quality control and the detailed mechanisms of mitochondrial energy generation are central to understanding susceptibility to pathologies associated with aging including cancer, cardiac and neurodegenerative diseases. A precision medicine approach is also needed to evaluate the impact of exercise or caloric restriction on health. In this review, we discuss how technical advances in assessing mitochondrial genetics, cellular bioenergetics and metabolomics offer new insights into developing metabolism-based clinical tests and metabolotherapies. We discuss informatics approaches, which can define the bioenergetic-metabolite interactome and how this can help define healthy energetics. We propose that a personalized medicine approach that integrates metabolism and bioenergetics with physiologic parameters is central for understanding the pathophysiology of diseases with a metabolic etiology. New approaches that measure energetics and metabolomics from cells isolated from human blood or tissues can be of diagnostic and prognostic value to precision medicine. This is particularly significant with the development of new metabolotherapies, such as mitochondrial transplantation, which could help treat complex metabolic diseases.


Assuntos
Metabolismo Energético/genética , Medicina de Precisão , Processamento de Proteína Pós-Traducional/genética , Proteômica , Humanos , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo
12.
J Biol Chem ; 292(7): 3029-3038, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28049732

RESUMO

Mitochondrial bioenergetics are critical for cellular homeostasis and stress responses. The reactive oxygen species-generating enzyme, NADPH oxidase 4 (Nox4), regulates a number of physiological and pathological processes, including cellular differentiation, host defense, and tissue fibrosis. In this study we explored the role of constitutive Nox4 activity in regulating mitochondrial function. An increase in mitochondrial oxygen consumption and reserve capacity was observed in murine and human lung fibroblasts with genetic deficiency (or silencing) of Nox4. Inhibition of Nox4 expression/activity by genetic or pharmacological approaches resulted in stimulation of mitochondrial biogenesis, as evidenced by elevated mitochondrial-to-nuclear DNA ratio and increased expression of the mitochondrial markers transcription factor A (TFAM), citrate synthase, voltage-dependent anion channel (VDAC), and cytochrome c oxidase subunit 4 (COX IV). Induction of mitochondrial biogenesis was dependent on TFAM up-regulation but was independent of the activation of the peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α). The enhancement of mitochondrial bioenergetics as well as the increase in mitochondrial proteins in Nox4-deficient lung fibroblasts is inhibited by silencing of nuclear factor erythroid-derived 2-like 2 (Nrf2), supporting a key role for Nrf2 in control of mitochondrial biogenesis. Together, these results indicate a critical role for both Nox4 and Nrf2 in counter-regulation of mitochondrial biogenesis and metabolism.


Assuntos
Pulmão/metabolismo , NADPH Oxidases/fisiologia , Fator 2 Relacionado a NF-E2/metabolismo , Biogênese de Organelas , Animais , Proteínas de Ligação a DNA/genética , Metabolismo Energético , Inativação Gênica , Proteínas de Grupo de Alta Mobilidade/genética , Humanos , Pulmão/citologia , Camundongos , Camundongos Knockout , NADPH Oxidase 4 , NADPH Oxidases/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , RNA Mensageiro/genética
13.
FASEB J ; 31(4): 1608-1619, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28069826

RESUMO

Androgen-deprivation therapy has been identified to induce oxidative stress in prostate cancer (PCa), leading to reactivation of androgen receptor (AR) signaling in a hormone-refractory manner. Thus, antioxidant therapies have gained attention as adjuvants for castration-resistant PCa. Here, we report for the first time that human endostatin (ES) prevents androgen-independent growth phenotype in PCa cells through its molecular targeting of AR and glucocorticoid receptor (GR) and downstream pro-oxidant signaling. This reversal after ES treatment significantly decreased PCa cell proliferation through down-regulation of GR and up-regulation of manganese superoxide dismutase and reduced glutathione levels. Proteome and biochemical analyses of ES-treated PCa cells further indicated a significant up-regulation of enzymes in the major reactive oxygen species (ROS) scavenging machinery, including catalase, glutathione synthetase, glutathione reductase, NADPH-cytochrome P450 reductase, biliverdin reductase, and thioredoxin reductase, resulting in a concomitant reduction of intracellular ROS. ES further augmented the antioxidant system through up-regulation of glucose influx, the pentose phosphate pathway, and NAD salvaging pathways. This shift in cancer cell redox homeostasis by ES significantly decreased the effect of protumorigenic oxidative machinery on androgen-independent PCa growth, suggesting that ES can suppress GR-induced resistant phenotype upon AR antagonism and that the dual targeting action of ES on AR and GR can be further translated to PCa therapy.-Lee, J. H., Kang, M., Wang, H., Naik, G., Mobley, J. A., Sonpavde, G., Garvey, W. T., Darley-Usmar, V. M., Ponnazhagan, S. Endostatin inhibits androgen-independent prostate cancer growth by suppressing nuclear receptor-mediated oxidative stress.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Endostatinas/farmacologia , Estresse Oxidativo , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Catalase/genética , Catalase/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Glutationa Redutase/genética , Glutationa Redutase/metabolismo , Humanos , Masculino , NADPH-Ferri-Hemoproteína Redutase/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Receptores de Glucocorticoides/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxina Dissulfeto Redutase/metabolismo
14.
FASEB J ; 30(5): 1865-79, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26839378

RESUMO

Recently we have reported that age-dependent decline in antioxidant levels accelerated apoptosis and skeletal muscle degeneration. Here, we demonstrate genetic ablation of the master cytoprotective transcription factor, nuclear factor (erythroid-derived-2)-like 2 (Nrf2), aggravates cardiotoxin (CTX)-induced tibialis anterior (TA) muscle damage. Disruption of Nrf2 signaling sustained the CTX-induced burden of reactive oxygen species together with compromised expression of antioxidant genes and proteins. Transcript/protein expression of phenotypic markers of muscle differentiation, namely paired box 7 (satellite cell) and early myogenic differentiation and terminal differentiation (myogenin and myosin heavy chain 2) were increased on d 2 and 4 postinjury but later returned to baseline levels on d 8 and 15 in wild-type (WT) mice. In contrast, these responses were persistently augmented in Nrf2-null mice suggesting that regulation of the regeneration-related signaling mechanisms require Nrf2 for normal functioning. Furthermore, Nrf2-null mice displayed slower regeneration marked by dysregulation of embryonic myosin heavy chain temporal expression. Histologic observations illustrated that Nrf2-null mice displayed smaller, immature TA muscle fibers compared with WT counterparts on d 15 after CTX injury. Improvement in TA muscle morphology and gain in muscle mass evident in the WT mice was not noticeable in the Nrf2-null animals. Taken together these data show that the satellite cell activation, proliferation, and differentiation requires a functional Nrf2 system for effective healing following injury.-Shelar, S. B., Narasimhan, M., Shanmugam, G., Litovsky, S. H., Gounder, S. S., Karan, G., Arulvasu, C., Kensler, T. W., Hoidal, J. R., Darley-Usmar, V. M., Rajasekaran, N. S. Disruption of nuclear factor (erythroid-derived-2)-like 2 antioxidant signaling: a mechanism for impaired activation of stem cells and delayed regeneration of skeletal muscle.


Assuntos
Antioxidantes/fisiologia , Cardiotoxinas/toxicidade , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/crescimento & desenvolvimento , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais/fisiologia , Envelhecimento , Animais , Linhagem Celular , Proliferação de Células/fisiologia , Regulação da Expressão Gênica/fisiologia , Humanos , Camundongos , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Regeneração/fisiologia , Células Satélites de Músculo Esquelético/fisiologia , Células-Tronco
15.
J Biol Chem ; 290(42): 25427-38, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26318453

RESUMO

Contraction is crucial in maintaining the differentiated phenotype of myofibroblasts. Contraction is an energy-dependent mechanism that relies on the production of ATP by mitochondria and/or glycolysis. Although the role of mitochondrial biogenesis in the adaptive responses of skeletal muscle to exercise is well appreciated, mechanisms governing energetic adaptation of myofibroblasts are not well understood. Our study demonstrates induction of mitochondrial biogenesis and aerobic glycolysis in response to the differentiation-inducing factor transforming growth factor ß1 (TGF-ß1). This metabolic reprogramming is linked to the activation of the p38 mitogen-activated protein kinase (MAPK) pathway. Inhibition of p38 MAPK decreased accumulation of active peroxisome proliferator-activated receptor γ coactivator 1α in the nucleus and altered the translocation of mitochondrial transcription factor A to the mitochondria. Genetic or pharmacologic approaches that block mitochondrial biogenesis or glycolysis resulted in decreased contraction and reduced expression of TGF-ß1-induced α-smooth muscle actin and collagen α-2(I) but not of fibronectin or collagen α-1(I). These data indicate a critical role for TGF-ß1-induced metabolic reprogramming in regulating myofibroblast-specific contractile signaling and support the concept of integrating bioenergetics with cellular differentiation.


Assuntos
Diferenciação Celular , Metabolismo Energético , Miofibroblastos/metabolismo , Linhagem Celular , Transporte de Elétrons , Glicólise , Humanos , Pulmão/citologia , Pulmão/metabolismo , Mitocôndrias/metabolismo , Miofibroblastos/citologia , Consumo de Oxigênio , Fator de Crescimento Transformador beta1/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
Biochim Biophys Acta ; 1852(11): 2525-34, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26327682

RESUMO

The quality of platelets decreases over storage time, shortening their shelf life and potentially worsening transfusion outcomes. The changes in mitochondrial function associated with platelet storage are poorly defined and to address this we measured platelet bioenergetics in freshly isolated and stored platelets. We demonstrate that the hypotonic stress test stimulates both glycolysis and oxidative phosphorylation and the stored platelets showed a decreased recovery to this stress. We found no change in aggregability between the freshly isolated and stored platelets. Bioenergetic parameters were changed including increased proton leak and decreased basal respiration and this was reflected in a lower bioenergetic health index (BHI). Mitochondrial electron transport, measured in permeabilized platelets, showed only minor changes which are unlikely to have a significant impact on platelet function. There were no changes in basal glycolysis between the fresh and stored platelets, however, glycolytic rate was increased in stored platelets when mitochondrial ATP production was inhibited. The increase in proton leak was attenuated by the addition of albumin, suggesting that free fatty acids could play a role in increasing proton leak and decreasing mitochondrial function. In summary, platelet storage causes a modest decrease in oxidative phosphorylation driven by an increase in mitochondrial proton leak, which contributes to the decreased recovery to hypotonic stress.

17.
J Transl Med ; 14: 86, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27048381

RESUMO

BACKGROUND: Anomalies in myocardial structure involving myocyte growth, hypertrophy, differentiation, apoptosis, necrosis etc. affects its function and render cardiac tissue more vulnerable to the development of heart failure. Although oxidative stress has a well-established role in cardiac remodeling and dysfunction, the mechanisms linking redox state to atrial cardiomyocyte hypertrophic changes are poorly understood. Here, we investigated the role of nuclear erythroid-2 like factor-2 (Nrf2), a central transcriptional mediator, in redox signaling under high intensity exercise stress (HIES) in atria. METHODS: Age and sex-matched wild-type (WT) and Nrf2(-/-) mice at >20 months of age were subjected to HIES for 6 weeks. Gene markers of hypertrophy and antioxidant enzymes were determined in the atria of WT and Nrf2(-/-) mice by real-time qPCR analyses. Detection and quantification of antioxidants, 4-hydroxy-nonenal (4-HNE), poly-ubiquitination and autophagy proteins in WT and Nrf2(-/-) mice were performed by immunofluorescence analysis. The level of oxidative stress was measured by microscopical examination of di-hydro-ethidium (DHE) fluorescence. RESULTS: Under the sedentary state, Nrf2 abrogation resulted in a moderate down regulation of some of the atrial antioxidant gene expression (Gsr, Gclc, Gstα and Gstµ) despite having a normal redox state. In response to HIES, enlarged atrial myocytes along with significantly increased gene expression of cardiomyocyte hypertrophy markers (Anf, Bnf and ß-Mhc) were observed in Nrf2(-/-) when compared to WT mice. Further, the transcript levels of Gclc, Gsr and Gstµ and protein levels of NQO1, catalase, GPX1 were profoundly downregulated along with GSH depletion and increased oxidative stress in Nrf2(-/-) mice when compared to its WT counterparts after HIES. Impaired antioxidant state and profound oxidative stress were associated with enhanced atrial expression of LC3 and ATG7 along with increased ubiquitination of ATG7 in Nrf2(-/-) mice subjected to HIES. CONCLUSIONS: Loss of Nrf2 describes an altered biochemical phenotype associated with dysregulation in genes related to redox state, ubiquitination and autophagy in HIES that result in atrial hypertrophy. Therefore, our findings direct that preserving Nrf2-related antioxidant function would be one of the effective strategies to safeguard atrial health.


Assuntos
Antioxidantes/metabolismo , Deleção de Genes , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Condicionamento Físico Animal , Transdução de Sinais , Estresse Fisiológico , Envelhecimento/patologia , Animais , Autofagia , Regulação para Baixo/genética , Imunofluorescência , Glutationa/metabolismo , Hipertrofia , Peroxidação de Lipídeos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Fator 2 Relacionado a NF-E2/deficiência , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Transcrição Gênica , Proteínas Ubiquitinadas/metabolismo
18.
Biochem J ; 467(3): 517-27, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25742174

RESUMO

The apoA-I (apolipoprotein A-I) mimetic peptide 4F favours the differentiation of human monocytes to an alternatively activated M2 phenotype. The goal of the present study was to test whether the 4F-mediated differentiation of MDMs (monocyte-derived macrophages) requires the induction of an oxidative metabolic programme. 4F treatment induced several genes in MDMs that play an important role in lipid metabolism, including PPARγ (peroxisome-proliferator-activated receptor γ) and CD36. Addition of 4F was associated with a significant increase in FA (fatty acid) uptake and oxidation compared with vehicle treatment. Mitochondrial respiration was assessed by measurement of the OCR (oxygen-consumption rate). 4F increased basal and ATP-linked OCR as well as maximal uncoupled mitochondrial respiration. These changes were associated with a significant increase in ΔΨm (mitochondrial membrane potential). The increase in metabolic activity in 4F-treated MDMs was attenuated by etomoxir, an inhibitor of mitochondrial FA uptake. Finally, addition of the PPARγ antagonist T0070907 to 4F-treated MDMs reduced the expression of CD163 and CD36, cell-surface markers for M2 macrophages, and reduced basal and ATP-linked OCR. These results support our hypothesis that the 4F-mediated differentiation of MDMs to an anti-inflammatory phenotype is due, in part, to an increase in FA uptake and mitochondrial oxidative metabolism.


Assuntos
Apolipoproteína A-I/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Peptídeos/farmacologia , Anti-Inflamatórios/farmacologia , Benzamidas/farmacologia , Materiais Biomiméticos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Células Cultivadas , Metabolismo Energético , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Macrófagos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Consumo de Oxigênio , PPAR gama/antagonistas & inibidores , Piridinas/farmacologia
19.
Lab Invest ; 95(2): 132-41, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25437645

RESUMO

Atherosclerosis and valvular heart disease often require treatment with corrective surgery to prevent future myocardial infarction, ischemic heart disease, and heart failure. Mechanisms underlying the development of the associated complications of surgery are multifactorial and have been linked to inflammation and oxidative stress, classically as measured in the blood or plasma of patients. Postoperative pericardial fluid (PO-PCF) has not been investigated in depth with respect to the potential to induce oxidative stress. This is important because cardiac surgery disrupts the integrity of the pericardial membrane surrounding the heart and causes significant alterations in the composition of the pericardial fluid (PCF). This includes contamination with hemolyzed blood and high concentrations of oxidized hemoglobin, which suggests that cardiac surgery results in oxidative stress within the pericardial space. Accordingly, we tested the hypothesis that PO-PCF is highly pro-oxidant and that the potential interaction between inflammatory cell-derived hydrogen peroxide with hemoglobin is associated with oxidative stress. Blood and PCF were collected from 31 patients at the time of surgery and postoperatively from 4 to 48 h after coronary artery bypass grafting, valve replacement, or valve repair (mitral or aortic). PO-PCF contained high concentrations of neutrophils and monocytes, which are capable of generating elevated amounts of superoxide and hydrogen peroxide through the oxidative burst. In addition, PO-PCF primed naive neutrophils resulting in an enhanced oxidative burst upon stimulation. The PO-PCF also contained increased concentrations of cell-free oxidized hemoglobin that was associated with elevated levels of F2α isoprostanes and prostaglandins, consistent with both oxidative stress and activation of cyclooxygenase. Lastly, protein analysis of the PO-PCF revealed evidence of protein thiol oxidation and protein carbonylation. We conclude that PO-PCF is highly pro-oxidant and speculate that it may contribute to the risk of postoperative complications.


Assuntos
Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Líquido Extracelular/metabolismo , Hemoglobinas/metabolismo , Estresse Oxidativo/fisiologia , Pericárdio/fisiopatologia , Complicações Pós-Operatórias/fisiopatologia , Análise de Variância , Contagem de Células Sanguíneas , Eletroforese em Gel de Poliacrilamida , F2-Isoprostanos/metabolismo , Citometria de Fluxo , Humanos , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos/fisiologia , Espectrometria de Massas , Neutrófilos/metabolismo , Oxirredução , Pericárdio/metabolismo , Carbonilação Proteica , Corantes de Rosanilina , Compostos de Sulfidrila/metabolismo
20.
J Neurochem ; 131(5): 625-33, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25081478

RESUMO

Parkinson's disease is the second most common neurodegenerative disorder with both mitochondrial dysfunction and insufficient autophagy playing a key role in its pathogenesis. Among the risk factors, exposure to the environmental neurotoxin rotenone increases the probability of developing Parkinson's disease. We previously reported that in differentiated SH-SY5Y cells, rotenone-induced cell death is directly related to inhibition of mitochondrial function. How rotenone at nM concentrations inhibits mitochondrial function, and whether it can engage the autophagy pathway necessary to remove damaged proteins and organelles, is unknown. We tested the hypothesis that autophagy plays a protective role against rotenone toxicity in primary neurons. We found that rotenone (10-100 nM) immediately inhibited cellular bioenergetics. Concentrations that decreased mitochondrial function at 2 h, caused cell death at 24 h with an LD50 of 10 nM. Overall, autophagic flux was decreased by 10 nM rotenone at both 2 and 24 h, but surprisingly mitophagy, or autophagy of the mitochondria, was increased at 24 h, suggesting that a mitochondrial-specific lysosomal degradation pathway may be activated. Up-regulation of autophagy by rapamycin protected against cell death while inhibition of autophagy by 3-methyladenine exacerbated cell death. Interestingly, while 3-methyladenine exacerbated the rotenone-dependent effects on bioenergetics, rapamycin did not prevent rotenone-induced mitochondrial dysfunction, but caused reprogramming of mitochondrial substrate usage associated with both complex I and complex II activities. Taken together, these data demonstrate that autophagy can play a protective role in primary neuron survival in response to rotenone; moreover, surviving neurons exhibit bioenergetic adaptations to this metabolic stressor.


Assuntos
Autofagia/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Inseticidas/farmacologia , Rotenona/farmacologia , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/citologia , Dano ao DNA/efeitos dos fármacos , DNA Mitocondrial/antagonistas & inibidores , DNA Mitocondrial/genética , Relação Dose-Resposta a Droga , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Lactosilceramidas/farmacologia , Neurônios/efeitos dos fármacos , Oligomicinas/farmacologia , Consumo de Oxigênio/efeitos dos fármacos , Ratos , Sirolimo/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA