Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell ; 161(2): 240-54, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25860607

RESUMO

In vitro modeling of human disease has recently become feasible with induced pluripotent stem cell (iPSC) technology. Here, we established patient-derived iPSCs from a Li-Fraumeni syndrome (LFS) family and investigated the role of mutant p53 in the development of osteosarcoma (OS). LFS iPSC-derived osteoblasts (OBs) recapitulated OS features including defective osteoblastic differentiation as well as tumorigenic ability. Systematic analyses revealed that the expression of genes enriched in LFS-derived OBs strongly correlated with decreased time to tumor recurrence and poor patient survival. Furthermore, LFS OBs exhibited impaired upregulation of the imprinted gene H19 during osteogenesis. Restoration of H19 expression in LFS OBs facilitated osteoblastic differentiation and repressed tumorigenic potential. By integrating human imprinted gene network (IGN) into functional genomic analyses, we found that H19 mediates suppression of LFS-associated OS through the IGN component DECORIN (DCN). In summary, these findings demonstrate the feasibility of studying inherited human cancer syndromes with iPSCs.


Assuntos
Redes Reguladoras de Genes , Células-Tronco Pluripotentes Induzidas/citologia , Síndrome de Li-Fraumeni/complicações , Osteossarcoma/etiologia , Adolescente , Adulto , Animais , Criança , Decorina/metabolismo , Feminino , Humanos , Síndrome de Li-Fraumeni/genética , Síndrome de Li-Fraumeni/patologia , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Modelos Biológicos , Transplante de Neoplasias , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese , Osteossarcoma/genética , Osteossarcoma/patologia , RNA Longo não Codificante/metabolismo , Transplante Heterólogo , Proteína Supressora de Tumor p53/metabolismo
2.
Cell ; 145(2): 183-97, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21477851

RESUMO

The embryonic stem (ES) cell transcriptional and chromatin-modifying networks are critical for self-renewal maintenance. However, it remains unclear whether these networks functionally interact and, if so, what factors mediate such interactions. Here, we show that WD repeat domain 5 (Wdr5), a core member of the mammalian Trithorax (trxG) complex, positively correlates with the undifferentiated state and is a regulator of ES cell self-renewal. We demonstrate that Wdr5, an "effector" of H3K4 methylation, interacts with the pluripotency transcription factor Oct4. Genome-wide protein localization and transcriptome analyses demonstrate overlapping gene regulatory functions between Oct4 and Wdr5. The Oct4-Sox2-Nanog circuitry and trxG cooperate in activating transcription of key self-renewal regulators, and furthermore, Wdr5 expression is required for the efficient formation of induced pluripotent stem (iPS) cells. We propose an integrated model of transcriptional and epigenetic control, mediated by select trxG members, for the maintenance of ES cell self-renewal and somatic cell reprogramming.


Assuntos
Células-Tronco Embrionárias/metabolismo , Redes Reguladoras de Genes , Proteínas/metabolismo , Animais , Imunoprecipitação da Cromatina , Células-Tronco Embrionárias/citologia , Histona-Lisina N-Metiltransferase , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Metilação , Camundongos , Proteína de Leucina Linfoide-Mieloide/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Análise de Sequência de DNA , Ativação Transcricional
3.
Stem Cells ; 27(2): 352-62, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19038789

RESUMO

LIN-28 is a gene recently shown to be involved in the conversion of somatic cells to induced pluripotent stem cells. We have previously shown that LIN-28 is highly expressed in human embryonic stem cells (HESCs); however, its role in these cells has not been investigated. We now show that, like OCT4, SOX2, and NANOG, LIN-28 is downregulated during differentiation of HESCs into embryoid bodies. In addition, we investigate the role of LIN-28 in HESCs by manipulation of its expression levels. LIN-28 overexpression impairs the ability of cells to grow at clonal densities, due to increased differentiation and decreased cell division. Analysis of cell differentiation under these conditions revealed that it is mostly towards the extraembryonic endoderm lineage. Moreover, we show that, during early mouse development, high levels of Lin-28 are also observed in the extraembryonic endoderm, and therefore it seems that, both in vitro and in vivo, high levels of LIN-28 may specify an extraembryonic endoderm fate. However, LIN-28 seems dispensable for self-renewal of HESCs; its downregulation neither impairs HESC proliferation nor leads to their differentiation. Thus, LIN-28 does not seem to be involved in the self-renewal of HESCs, but rather seems to be involved in their decision to switch from self-renewal to differentiation.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/fisiologia , Western Blotting , Ciclo Celular/genética , Ciclo Celular/fisiologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Divisão Celular/genética , Divisão Celular/fisiologia , Linhagem Celular , Citometria de Fluxo , Humanos , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , RNA Interferente Pequeno , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
J Immunother Cancer ; 7(1): 304, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31727131

RESUMO

Despite remarkable success in the treatment of hematological malignancies, CAR T-cell therapies for solid tumors have floundered, in large part due to local immune suppression and the effects of prolonged stimulation leading to T-cell dysfunction and exhaustion. One mechanism by which gliomas and other cancers can hamper CAR T cells is through surface expression of inhibitory ligands such as programmed cell death ligand 1 (PD-L1). Using the CRIPSR-Cas9 system, we created universal CAR T cells resistant to PD-1 inhibition through multiplexed gene disruption of endogenous T-cell receptor (TRAC), beta-2 microglobulin (B2M) and PD-1 (PDCD1). Triple gene-edited CAR T cells demonstrated enhanced activity in preclinical glioma models. Prolonged survival in mice bearing intracranial tumors was achieved after intracerebral, but not intravenous administration. CRISPR-Cas9 gene-editing not only provides a potential source of allogeneic, universal donor cells, but also enables simultaneous disruption of checkpoint signaling that otherwise impedes maximal antitumor functionality.


Assuntos
Neoplasias Encefálicas/terapia , Receptores ErbB , Glioblastoma/terapia , Imunoterapia Adotiva , Receptor de Morte Celular Programada 1/genética , Animais , Neoplasias Encefálicas/imunologia , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Glioblastoma/imunologia , Humanos , Camundongos , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Stem Cell Reports ; 5(2): 207-20, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26267829

RESUMO

Analyses of gene expression in single mouse embryonic stem cells (mESCs) cultured in serum and LIF revealed the presence of two distinct cell subpopulations with individual gene expression signatures. Comparisons with published data revealed that cells in the first subpopulation are phenotypically similar to cells isolated from the inner cell mass (ICM). In contrast, cells in the second subpopulation appear to be more mature. Pluripotency Gene Regulatory Network (PGRN) reconstruction based on single-cell data and published data suggested antagonistic roles for Oct4 and Nanog in the maintenance of pluripotency states. Integrated analyses of published genomic binding (ChIP) data strongly supported this observation. Certain target genes alternatively regulated by OCT4 and NANOG, such as Sall4 and Zscan10, feed back into the top hierarchical regulator Oct4. Analyses of such incoherent feedforward loops with feedback (iFFL-FB) suggest a dynamic model for the maintenance of mESC pluripotency and self-renewal.


Assuntos
Proliferação de Células , Células-Tronco Embrionárias/citologia , Redes Reguladoras de Genes , Células-Tronco Pluripotentes/citologia , Animais , Apoptose , Linhagem Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Retroalimentação Fisiológica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Fenótipo , Células-Tronco Pluripotentes/metabolismo , Análise de Célula Única , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Stem Cell Reports ; 5(1): 97-110, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26095607

RESUMO

Tbx3, a member of the T-box family, plays important roles in development, stem cells, nuclear reprogramming, and cancer. Loss of Tbx3 induces differentiation in mouse embryonic stem cells (mESCs). However, we show that mESCs exist in an alternate stable pluripotent state in the absence of Tbx3. In-depth transcriptome analysis of this mESC state reveals Dppa3 as a direct downstream target of Tbx3. Also, Tbx3 facilitates the cell fate transition from pluripotent cells to mesoderm progenitors by directly repressing Wnt pathway members required for differentiation. Wnt signaling regulates differentiation of mESCs into mesoderm progenitors and helps to maintain a naive pluripotent state. We show that Tbx3, a downstream target of Wnt signaling, fine tunes these divergent roles of Wnt signaling in mESCs. In conclusion, we identify a signaling-TF axis that controls the exit of mESCs from a self-renewing pluripotent state toward mesoderm differentiation.


Assuntos
Diferenciação Celular/genética , Células-Tronco Embrionárias Murinas/citologia , Proteínas Repressoras/genética , Proteínas com Domínio T/genética , Animais , Linhagem da Célula/genética , Proteínas Cromossômicas não Histona , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/citologia , Mesoderma/crescimento & desenvolvimento , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Proteínas Repressoras/biossíntese , Proteínas com Domínio T/biossíntese , Via de Sinalização Wnt/genética
7.
Cell Stem Cell ; 11(2): 179-94, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22862944

RESUMO

Many signals must be integrated to maintain self-renewal and pluripotency in embryonic stem cells (ESCs) and to enable induced pluripotent stem cell (iPSC) reprogramming. However, the exact molecular regulatory mechanisms remain elusive. To unravel the essential internal and external signals required for sustaining the ESC state, we conducted a short hairpin (sh) RNA screen of 104 ESC-associated phosphoregulators. Depletion of one such molecule, aurora kinase A (Aurka), resulted in compromised self-renewal and consequent differentiation. By integrating global gene expression and computational analyses, we discovered that loss of Aurka leads to upregulated p53 activity that triggers ESC differentiation. Specifically, Aurka regulates pluripotency through phosphorylation-mediated inhibition of p53-directed ectodermal and mesodermal gene expression. Phosphorylation of p53 not only impairs p53-induced ESC differentiation but also p53-mediated suppression of iPSC reprogramming. Our studies demonstrate an essential role for Aurka-p53 signaling in the regulation of self-renewal, differentiation, and somatic cell reprogramming.


Assuntos
Células-Tronco Embrionárias/metabolismo , Células-Tronco Pluripotentes/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Animais , Aurora Quinase A , Aurora Quinases , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Células-Tronco Embrionárias/citologia , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Fosforilação , Células-Tronco Pluripotentes/citologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética , Xenopus
8.
Regen Med ; 1(3): 317-25, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-17465785

RESUMO

Human embryonic stem cells are pluripotent cells derived from the inner cell mass of blastocyst-stage embryos. These cells possess two unique properties: an indefinite self-renewal capacity and pluripotency, the ability to differentiate to cells from the three germ layers. The pathways governing self-renewal and pluripotency are currently under intensive research. Much effort is devoted to the establishment of feeder-free cultures by elucidation of the cytokines and growth factors required for cell propagation. These seem thus far, to be distinct from those required by mouse embryonic stem cells. In addition, transcriptional regulators unique to embryonic stem cells seem to govern the pluripotent state. These transcriptional regulators determine cell fate, and decide whether the cell will remain pluripotent or differentiate. Together, the understanding of the exogenous and endogenous factors determining cell fate will facilitate the use of these cells in cell-based therapies and will allow understanding of early developmental processes.


Assuntos
Diferenciação Celular , Proliferação de Células , Células-Tronco/citologia , Células-Tronco/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Técnicas de Cultura de Células , Células Cultivadas , Citocinas/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes , Células-Tronco/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Development ; 133(6): 1193-201, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16501172

RESUMO

Human embryonic stem cells (HESCs) are pluripotent cells derived from the ICM of blastocyst stage embryos. As the factors needed for their growth are largely undefined, they are propagated on feeder cells or with conditioned media from feeder cells. This is in contrast to mouse embryonic stem cells (MESCs) where addition of leukemia inhibitory factor (LIF) replaces the need for a feeder layer. Recently, the transcription factor Nanog was suggested to allow LIF and feeder-free growth of MESCs. Here, we show that NANOG overexpression in HESCs enables their propagation for multiple passages during which the cells remain pluripotent. NANOG overexpressing cells form colonies efficiently even at a very low density, an ability lost upon excision of the transgene. Cells overexpressing NANOG downregulate expression of markers specific to the ICM and acquire expression of a marker specific to the primitive ectoderm (the consecutive pluripotent population in the embryo). Examination of global transcriptional changes upon NANOG overexpression by DNA microarray analysis reveals new markers suggested to discriminate between these populations. These results are significant in the understanding of self-renewal and pluripotency pathways in HESCs, and of their use for modeling early development in humans.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Ectoderma/citologia , Ectoderma/metabolismo , Proteínas de Homeodomínio/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Biomarcadores , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Meios de Cultivo Condicionados , Proteínas de Ligação a DNA/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Humanos , Proteína Homeobox Nanog , Fatores de Tempo , Transcrição Gênica , Regulação para Cima/genética
10.
Hum Reprod ; 19(12): 2875-83, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15375076

RESUMO

BACKGROUND: The aim of this study was to characterize human embryonic stem (ES) cells at the molecular level by performing large-scale complementary DNA (cDNA) analysis using DNA micro-arrays. METHODS: The transcription profile of human ES cells was determined by comparing it to 2, 10 and 30-day old embryoid bodies (EBs) using Affymetrix Genechip human micro-arrays (U133). RESULTS: According to this analysis we demonstrate that two human ES cell lines are more close to each other than to their differentiated derivatives. We also show the spectrum of cytokine receptors that they express, and demonstrate the presence of five genes that are highly specific to human ES cells and to germ cells. Moreover, by profiling different stages in the differentiation of human embryoid bodies, we illustrate the clustering of five sets of temporally expressed genes, which could be related to the sequential stages of embryonic development. Among them are known genes that are involved in early pattern formation. CONCLUSIONS: The present study provides a molecular basis for the identity of human ES cells and demonstrates that during their in vitro differentiation they express embryonic specific genes in a stage specific manner.


Assuntos
Diferenciação Celular/genética , Embrião de Mamíferos/citologia , Expressão Gênica , Células-Tronco/fisiologia , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Homeodomínio/genética , Humanos , Fatores de Determinação Direita-Esquerda , Proteína Nodal , Fator 3 de Transcrição de Octâmero , Análise de Sequência com Séries de Oligonucleotídeos , Proteína D Associada a Surfactante Pulmonar/genética , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta/genética , alfa-Fetoproteínas/genética , Proteína Homeobox PITX2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA