Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Opt Express ; 32(2): 2271-2280, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38297761

RESUMO

In this article, we report a Si/Ge waveguide phototransistor with high responsivity and low dark current under low bias voltages, due to an engineered electric field distribution. The photodetector consists of n-i-p-i-n doping regions and shows a responsivity of 606 A/W at 1 V bias, and 1032 A/W at 2.8V bias with an input optical power of -50 dBm, and dark current of 4 µA and 42 µA respectively. This is achieved by placing two p+-doped regions in the silicon slab region beneath the Ge epitaxial layer. A measured small signal -3 dB bandwidth of 1.5 GHz with a -80 dBc/Hz phase noise response at 1 KHz frequency offset were demonstrated experimentally.

2.
Opt Lett ; 49(5): 1345-1348, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427009

RESUMO

We present a systematic photonic filter design approach by deploying pole-zero optimization. The filter transfer function is derived from its specifications by formulating closed-form optimization objective functions and subsequently translating them into optical design parameters. Two distinct filter examples, namely Chebyshev and elliptic filters, are considered for the design and validation. A compact reconfigurable three-pole photonic filter is fabricated on a silicon photonic platform to illustrate the proposed design technique including transmission tunability. Integrated thermal phase shifters coupled with micro-ring resonators are used to reconfigure filter responses. A well-matched experimental demonstration is presented to validate the proposed tuning method. We achieved a sharp out-of-band edge rejection of at least 20 and 40 dB for the elliptic and Chebyshev filter, respectively.

3.
Opt Lett ; 49(8): 2193-2196, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621109

RESUMO

Photonic-assisted signal processing of high-bandwidth signals emerges as a solution for challenges encountered in electronic-based processing. Here we present a concept for a compact, photonic-assisted digital-to-analog converter (DAC) and optical IQ-modulator in one single integrated device based on two innovative concepts: a segmented Mach-Zehnder modulator and orthogonal sampling. For electrically driving the modulator, only a single radio frequency oscillator and no pulse source or electrical DAC are required. The presented and simulated proof-of-concept device with six segments can generate a multi-level and high-bandwidth signal from low-bandwidth electronic drivers; e.g., we show the generation of a 120 Gbps data rate, 16-quadrature amplitude modulation (16-QAM, 30 Gbaud) signal solely based on low-bandwidth (5 GHz) non-return-to-zero (NRZ) signals. Integrated on a silicon photonic platform, the device provides fixable speed and bandwidth operations, positioning it as a viable solution for diverse communication systems.

4.
Chemphyschem ; 25(2): e202300635, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37936318

RESUMO

Liposomes of a cationic lipid dioctadecyldimethylammonium bromide (DODAB) are efficient nanocarriers of nucleic acids. Incorporation of a neutral lipid monoolein (MO) in excess (xMO >0.5) changes the lamellar organization of DODAB liposomes into non-lamellar inverted structures of DODAB/MO liposomes facilitating nucleic acid delivery to cells. Photoexcitation of 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS), a photoacid, initiates an excited state proton transfer (ESPT) reaction in its protonated form (ROH*) generating the deprotonated anionic form (RO- *). The fluorescence intensity ratio (IROH* /IRO-* ) of these two forms is governed by the ESPT dynamics, and increases with increasing MO content (xMO ) in the cationic liposomes of DODAB. Transition from lamellar organization of DODAB liposomes into non-lamellar inverted structures of DODAB/MO liposomes, due to incorporation of MO (xMO ~0.7), is manifested by a significant increase of ESPT time (τPT ) and the time constant of wobbling motion (τW ) of HPTS. Thus, the lamellar organizations of DODAB or DODAB-rich (xMO 0.2) liposomes and the non-lamellar organizations of MO-rich (xMO ~0.7) liposomes are recognized by significantly different excited state dynamics of the photoacid.


Assuntos
Lipossomos , Compostos de Amônio Quaternário , Lipossomos/química , Compostos de Amônio Quaternário/química
5.
Physiol Plant ; 176(3): e14396, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887929

RESUMO

Phosphorus (P) is a crucial macronutrient required for normal plant growth. Its effective uptake from the soil is a trait of agronomic importance. Natural variation in maize (339 accessions) root traits, namely root length and number of primary, seminal, and crown roots, root and shoot phosphate (Pi) contents, and root-to-shoot Pi translocation (root: shoot Pi) under normal (control, 40 ppm) and low phosphate (LP, 1 ppm) conditions, were used for genome-wide association studies (GWAS). The Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK) model of GWAS provided 23 single nucleotide polymorphisms (SNPs) and 12 relevant candidate genes putatively linked with root Pi, root: shoot Pi, and crown root number (CRN) under LP. The DNA-protein interaction analysis of Zm00001d002842, Zm00001d002837, Zm00001d002843 for root Pi, and Zm00001d044312, Zm00001d045550, Zm00001d025915, Zm00001d044313, Zm00001d051842 for root: shoot Pi, and Zm00001d031561, Zm00001d001803, and Zm00001d001804 for CRN showed the presence of potential binding sites of key transcription factors like MYB62, bZIP11, ARF4, ARF7, ARF10 and ARF16 known for induction/suppression of phosphate starvation response (PHR). The in-silico RNA-seq analysis revealed up or down-regulation of candidate genes along with key transcription factors of PHR, while Uniprot analysis provided genetic relatedness. Candidate genes that may play a role in P uptake and root-to-shoot Pi translocation under LP are proposed using common PHR signaling components like MYB62, ARF4, ARF7, ARF10, ARF16, and bZIP11 to induce changes in root growth in maize. Candidate genes may be used to improve low P tolerance in maize using the CRISPR strategy.


Assuntos
Estudo de Associação Genômica Ampla , Fosfatos , Raízes de Plantas , Polimorfismo de Nucleotídeo Único , Zea mays , Zea mays/genética , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Fosfatos/metabolismo , Fosfatos/deficiência , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Desequilíbrio de Ligação/genética
6.
J Am Chem Soc ; 145(2): 1378-1388, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36594717

RESUMO

Structural non-centrosymmetry in semiconducting organic-inorganic hybrid halide perovskites can introduce functionalities like anomalous photovoltaics and nonlinear optical properties. Here we introduce a design principle to prepare Pb- and Bi-based two- and one-dimensional hybrid perovskites with polar non-centrosymmetric space groups. The design principle relies on creating dissimilar hydrogen and halogen bonding non-covalent interactions at the organic-inorganic interface. For example, in organic cations like I-(CH2)3-NH2(CH3)+ (MIPA), -CH3 is substituted by -CH2I at one end, and -NH3+ is substituted by -NH2(CH3)+ at the other end. These substitutions of two -H atoms by -I and -CH3 reduce the rotational symmetry of MIPA at both ends, compared to an unsubstituted cation, for example, H3C-(CH2)3-NH3+. Consequently, the dissimilar hydrogen-iodine and iodine-iodine interactions at the organic-inorganic interface of (MIPA)2PbI4 2D perovskites break the local inversion symmetries of Pb-I octahedra. Owing to this non-centrosymmetry, (MIPA)2PbI4 displays visible to infrared tunable nonlinear optical properties with second and third harmonic generation susceptibility values of 5.73 pm V-1 and 3.45 × 10-18 m2 V-2, respectively. Also, the single crystal shows photocurrent on shining visible light at no external bias, exhibiting anomalous photovoltaic effect arising from the structural asymmetry. The design strategy was extended to synthesize four new non-centrosymmetric hybrid perovskite compounds. Among them, one-dimensional (H3N-(CH2)3-NH(CH3)2)BiI5 shows a second harmonic generation susceptibility of 7.3 pm V-1 and a high anomalous photovoltaic open-circuit voltage of 22.6 V.

7.
Opt Express ; 31(19): 30160-30170, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37710564

RESUMO

A group-delay-unit-based integrated silicon photonic integrated circuit (PIC) is employed as a reconfigurable analog radio frequency decoder, which provides a real-time temporal and spectral analysis of any arbitrary multi-tone signal in the micro- and mm-wave range. The circuit is based on cascaded Mach-Zehnder interferometer embedded silicon microring resonators as variable delay units. The temporal decoding of the multi-tone input signal is demonstrated by tuning the signal with respect to the ring resonator delay and resonance. A one-to-one conformal time-to-frequency mapping provides real-time spectral decoding of the signal under test without additional digital signal processing. The idea is validated by several experimental results with single-tone and two-tone input signals in a compact, low-power, silicon PIC. The proposed real-time temporal analog frequency decoder may be very intriguing for high-speed, low-latency wireless applications, such as autonomous driving and 6G.

8.
Physiol Mol Biol Plants ; 29(3): 393-407, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37033763

RESUMO

Hot chilli ('Bhut Jolokia') (Capsicum chinense Jacq.) is the hottest chilli widely grown in the North-Eastern region of India for its high pungency. However, little information is available on its physiology, growth and developmental parameters including yield. Therefore, the present research was undertaken to study the physiological responses of Bhut Jolokia under elevated CO2 (eCO2) and temperature. Two germplasms from two different agro-climatic zones (Assam and Manipur) within the North-East region of India were collected based on the pungency. The present study explored the interactive effect of eCO2 [at 380, 550, 750 ppm (parts per million)] and temperature (at ambient, > 2 °C above ambient, and > 4 °C above ambient) on various physiological processes, and expression of some photosynthesis and capsaicin related genes in both the germplasms. Results revealed an increase (> 1-2 fold) in the net photosynthetic rate (Pn), carbohydrate content, and C: N ratio in 'Bhut Jolokia' under eCO2 and elevated temperature regimes compared to ambient conditions within the germplasms. Gene expression studies revealed an up-regulation of photosynthesis-related genes such as Cs RuBPC2 (Ribulose biphosphate carboxylase 2) and Cs SPS (Sucrose phosphate synthase) which, explained the higher Pn under eCO2 and temperature conditions. Both the germplasm showed better performance under CTGT-II (Carbon dioxide Temperature Gradient Tunnel having 550 ppm CO2 and temperature of 2 °C above ambient) in terms of various physiological parameters and up-regulation of key photosynthesis-related genes. An up-regulation of the Cs  capsaicin synthase gene was also evident in the study, which could be due to the metabolite readjustment in 'Bhut Jolokia'. In addition, the cultivar from Manipur (cv. 1) had less fruit drop compared to the cultivar from Assam (cv. 2) in CTGT II. The data indicated that 550 ppm of eCO2 and temperature elevation of > 2 °C above the ambient with CTGT-II favored the growth and development of 'Bhut Jolokia'. Thus, results suggest that Bhut Jolokia grown under the elevation of CO2 up to 550 ppm and temperature above 2 °C than ambient may support the growth, development, and yield. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01294-9.

9.
Physiol Mol Biol Plants ; 29(7): 1049-1059, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37649884

RESUMO

To deal with the vagaries of climate change, it is essential to develop climate-resilient agricultural practices, which improve crop productivity, and ensure food security. The impacts of high temperature and water deficit stress conditions pose serious challenges to a sustainable crop production. Several adaptation measures are practiced globally to address these challenges and among these altering the crop's typical growing season is one of the key management practices. Application of biostimulants and other growth hormones helps in compensating yield losses under abiotic stress significantly. Therefore, this study was conducted to evaluate the influence of vegetal protein hydrolysate based biostimulant to reduce the yield losses of off-season crops (soybean and chilli in summer and chickpea in early Kharif) when the temperature was higher than the regular season under water deficit stress conditions. The experiments were carried out with the foliar application of different protein hydrolysates (PHs) concentrations. The study revealed that the application of PHs significantly improved the membrane stability index, relative water content, total chlorophyll and proline content of leaves. Consequently, it led to an increase in the number of pods in soybean and chickpea, and fruits in chilli, leading to improved yields when plants were treated with the appropriate amount of PHs. Compared to untreated plants, PHs helped improve the efficiency of PS-II with significantly high photochemical efficiency (QYmax) even at higher excised leaf water loss or reduction in loss of relative water content. This study concluded that foliar application of PHs at 4, 2, and 6 ml L-1 can be beneficial for soybean, chickpea and chilli, which exhibited 17, 30, and 25% yield improvement respectively, over the untreated plants under water deficit stress. It is suggested that the benefits of PHs can be realized in soybean, chickpea and chilli under high temperature and water deficit stress. Therefore, vegetal PHs may be able to assist farmers in arid regions for boosting their income by raising market value and decreasing production barriers during the off-season. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01334-4.

10.
Chembiochem ; 23(9): e202200109, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35225409

RESUMO

Drug delivery to a target without adverse effects is one of the major criteria for clinical use. Herein, we have made an attempt to explore the delivery efficacy of SDS surfactant in a monomer and micellar stage during the delivery of the model drug, Toluidine Blue (TB) from the micellar cavity to DNA. Molecular recognition of pre-micellar SDS encapsulated TB with DNA occurs at a rate constant of k1 ∼652 s-1 . However, no significant release of encapsulated TB at micellar concentration was observed within the experimental time frame. This originated from the higher binding affinity of TB towards the nano-cavity of SDS at micellar concentration which does not allow the delivery of TB from the nano-cavity of SDS micelles to DNA. Thus, molecular recognition controls the extent of DNA recognition by TB which in turn modulates the rate of delivery of TB from SDS in a concentration-dependent manner.


Assuntos
DNA , Micelas , Genômica , Análise Espectral , Tensoativos
11.
Opt Express ; 30(17): 30164-30175, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36242125

RESUMO

Recent advances in silicon photonic components operating in the thulium-doped fiber amplifier (TDFA) wavelength regime around 2-µm have shown that these wavelengths hold great promise for on-chip photonic systems. Here we present our work on characterizing a Mach-Zehnder interferometer coupled silicon photonic ring resonator operating in the TDFA window for optical time delay applications. We describe the optical transmission and variable time delay properties of the resonator, including a detailed characterization and comparison of the directional coupler and Mach-Zehnder interferometer base components at both 1930 and 1550 nm wavelengths. The results show tuning of a ring from a 190-ps peak time delay at a resonant extinction ratio of 5.1-dB to a 560-ps peak time delay at an extinction ratio of 11.0-dB, in good agreement with optical models of the device. These results demonstrate significant promise towards the future application of TDFA band devices in optical time delay systems.

12.
Mol Divers ; 26(4): 1933-1955, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34554395

RESUMO

Breast and stomach cancer is reported as a leading cause for human mortality across the world. The overexpression of receptor tyrosine kinase (RTK) proteins, namely the human epidermal growth factor receptor2 (HER2) and the vascular endothelial growth factor receptor2 (VEGFR2), is reported to be responsible for development and metastasis of breast and stomach cancer. Although several synthetic tyrosine kinase inhibitors (TKIs) as drug candidates targeting RTK-HER2 and VEGFR2 are currently available in the market, these are expensive with the reported side effects. This confers an opportunity for development of alternative novel tyrosine kinase inhibitors (TKIs) for RTK-HER2 and VEGFR2 receptors from the botanical sources. In the present study, we characterized 47 bioactive phytocompounds from the methanol extracts of the rhizomes of Asiatic traditional medicinal herbs-Panax bipinnatifidus and Panax pseudoginseng, of Indian Himalayan landraces using HPLC, GC-MS and high-sensitivity LC-MS tools. We performed molecular docking and molecular dynamics simulation analysis using Schrödinger suite 2020-3 to confirm the TKI phytocompounds showing the best binding affinity towards RTK-HER2 and VEGFR2 receptors. The results of molecular docking studies confirmed that the phytocompound (ligand) luteolin 7-O-glucoside (IHP15) showed the highest binding affinity towards receptor HER2 (PDB ID: 3PP0) with docking score and Glide g score (G-Score) of - 13.272, while chlorogenic acid (IHP12) showed the highest binding affinity towards receptor VEGFR2 (PDB ID: 4AGC) with docking score and Glide g score (G-Score) of - 10.673. Molecular dynamics (MD) simulation analysis carried out for 100 ns has confirmed strong binding interaction between the ligand and receptor complex [luteolin 7-O-glucoside (IHP15) and HER2 (PDB ID: 3PP0)] and is found to be stabilized within 40 to 100 ns of MD simulation, whereas ligand-receptor complex [chlorogenic acid (IPH12) and VEGFR2 (PDB ID: 4AGC)] also showed strong binding interaction and is found to be stabilized within 18-30 ns but slightly deviated during 100 ns of MD simulation. In silico ADME-Tox study using SwissADME revealed that the ligands luteolin 7-O-glucoside (IHP15) and chlorogenic acid (IHP12) have passed majority parameters of the common drug discovery rules. The present study has confirmed luteolin 7-O-glucoside (IHP15) and chlorogenic acid (IHP12) as potential tyrosine kinase inhibitors (TKIs) which were found to inhibit RTKs-HER2 and VEGFR2 receptor proteins, and thus paving the way for development of alternative potential TKIs (drug molecules) for treatment of HER2- and VEGFR2-positive breast and stomach cancer.


Assuntos
Panax , Inibidores de Proteínas Quinases , Ácido Clorogênico , Glucosídeos , Humanos , Ligantes , Luteolina , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Panax/química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptor ErbB-2/antagonistas & inibidores , Neoplasias Gástricas , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
13.
Physiol Mol Biol Plants ; 28(2): 363-381, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35400882

RESUMO

In the present study, green synthesis of zinc oxide nanoparticles (ZnO NP) using Eucalyptus lanceolatus (leaf litter) extract was explored after characterization with UV spectrophotometery, Fourier Transform Infrared analysis, X-ray diffraction and TEM studies. ZnO NPs stability was ensured with - 32.1 mV zeta potential, while TEM showed ZnO NP as hexagonal structure (100 nm). In vitro antimicrobial activity showed potential of ZnO NP against pathogens causing diseases in maize plants. Both in vitro and in vivo studies of ZnO NP and ZnSO4 (200 ppm and 400 ppm) over a two year period (2019, 2020) were conducted on Zea mays L. var. PG2458. ZnO NP seed priming improved seed vigor index, germination percentage, shoot and root length and fresh biomass. Foliar application improved stem diameter and leaf surface area. Physiological status was relatively better, while reproductive attributes got altered to guide resource allocation for better cob growth and biomass with ZnO NP. Leaf, cob, grain and total Zn was maximum for 200 ppm ZnO NP. Translocation of Zn from leaf to cob and cob to grain was faster for ZnO NP compared to ZnSO4. Higher concentration (400 ppm) of ZnO NPs and ZnSO4 proved phytotoxic for plant growth attributes. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01136-0.

14.
Physiol Mol Biol Plants ; 28(6): 1311-1321, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35910442

RESUMO

The phenotyping of plant roots is a challenging task and poses a major lacuna in plant root research. Roots rhizospheric zone is affected by several environmental cues among which salinity, drought, heavy metal and soil pH are key players. Among biological factors, fungal, nematode and bacterial interactions with roots are vital for improving nutrient uptake efficiency in plants. The subterranean nature of a plant root and the limited number of approaches for root phenotyping offers a great challenge to the plant breeders to select a desirable root trait under different stress conditions. Identification of key root traits can provide a basic understanding for generating crop plants with enhanced ability to withstand various biotic or abiotic stresses. For instance, crops with improved soil exploration potential, phosphate uptake efficiency, water use efficiency and others. Laboratory methods such as hydroponics, rhizotron, rhizoslide and luminescence observatory for roots do not provide precise and desired root quantification attributes. Though 3D imaging by X-ray computed tomography (X-ray-CT) and magnetic resonance imaging techniques are complex, however, it provides the most applicable and practically relevant data for quantifying root system architecture traits. This review outlines the current developments in root studies including recent approaches viz. X-ray-CT, MRI, thermal infrared imaging and minirhizotron. Although root phenotyping is a laborious procedure, it offers multiple advantages by removing discrepancies and providing the actual practical significance of plant roots for breeding programs.

15.
Indian J Public Health ; 65(4): 387-390, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975084

RESUMO

Seasonal variation plays an important role in the occurrence of diarrheal diseases and distinct seasonal occurrence of diarrheal diseases, with bacterial diarrhea occurring more during the warm seasons and viral diarrhea occurring during the drier cool months, has been observed due to seasonal variation. Time-series cross-sectional study was conducted from January to December 2018 among 553 under-five children to assess seasonal variation of diarrheal diseases and its association with the drinking water quality in a resettlement colony of Delhi. The prevalence of diarrhea was 40.7% and was highest during the rainy season (67.6%). Majority of the water samples were found to be unsatisfactory for human consumption during the rainy and summer seasons. Significant and moderate relationship was found between the seasonal variation and occurrence of diarrhea (r = 0.728, P < 0.05) and most probable number count (r = 0.50, P < 0.05), respectively. Understanding the environmental factors that influences the occurrence of diarrheal diseases is warranted.


Assuntos
Água Potável , Criança , Estudos Transversais , Diarreia/epidemiologia , Humanos , Índia/epidemiologia , Lactente , Estações do Ano
16.
Kidney Int ; 97(4): 753-764, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32059999

RESUMO

Zinc fingers and homeoboxes (ZHX) proteins are heterodimeric transcriptional factors largely expressed at the cell membrane in podocytes in vivo. We found ZHX2-based heterodimers in podocytes, with ZHX2-ZHX1 predominantly at the cell membrane of the podocyte cell body, and ZHX2-ZHX3 at the slit diaphragm. In addition to changes in overall ZHX2 expression, there was increased podocyte nuclear ZHX3 and ZHX2 in patients with focal segmental glomerulosclerosis, and increased podocyte nuclear ZHX1 in patients with minimal change disease. Zhx2 deficient mice had increased podocyte ZHX1 and ZHX3 expression. Zhx2 deficient mice and podocyte specific Zhx2 overexpressing transgenic rats develop worse experimental focal segmental glomerulosclerosis than controls, with increased nuclear ZHX3 and ZHX2, respectively. By contrast, podocyte specific Zhx2 overexpressing transgenic rats develop lesser proteinuria during experimental minimal change disease due to peripheral sequestration of ZHX1 by ZHX2. Using co-immunoprecipitation, the interaction of ZHX2 with aminopeptidase A in the podocyte body cell membrane, and EPHRIN B1 in the slit diaphragm were noted to be central to upstream events in animal models of minimal change disease and focal segmental glomerulosclerosis, respectively. Mice deficient in Enpep, the gene for aminopeptidase A, and Efnb1, the gene for ephrin B1 developed worse albuminuria in glomerular disease models. Targeting aminopeptidase A in Zhx2 deficient mice with monoclonal antibodies induced albuminuria and upregulation of the minimal change disease mediator angiopoietin-like 4 through nuclear entry of ZHX1. Thus, podocyte ZHX2 imbalance is a critical factor in human glomerular disease, with minimal change disease disparities mediated mostly through ZHX1, and focal segmental glomerulosclerosis deviations through ZHX3 and ZHX2.


Assuntos
Glomerulosclerose Segmentar e Focal , Proteínas de Homeodomínio , Podócitos , Fatores de Transcrição , Animais , Genes Homeobox , Glomerulosclerose Segmentar e Focal/genética , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Podócitos/metabolismo , Fatores de Transcrição/genética , Dedos de Zinco
17.
Biochem Biophys Res Commun ; 529(3): 747-752, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32736702

RESUMO

Transforming growth factor-ß (TGF-ß) plays a crucial role in the development of epithelial to mesenchymal transition (EMT) and fibrosis, particularly in an ocular disorder such as proliferative vitreoretinopathy (PVR). However, the key molecular mechanism underlying its pathogenesis remains unknown. In the present study, using cultured ARPE-19 cells, we determined that TGF-ß initiates a signaling pathway through extracellular signal-regulated kinase (ERK)-mammalian target of rapamycin complex 1 (mTORC1) that stimulates trans-differentiation and fibrosis of retinal pigment epithelium. Blocking this pathway by a TGF-ßRI, ERK or mTORC1 inhibitor protected cells from EMT and fibrotic protein expression. TGF-ß1 treatment increased reactive oxygen species (ROS) via NOX4 upregulation, which acts downstream of ERK and mTORC1, as the ROS scavenger N-acetylcysteine and a pan-NADPH oxidase (NOX) inhibitor DPI dissipated excess ROS generation. TGF-ß1-induced oxidative stress resulted in EMT and fibrotic changes, as NAC and DPI prevented α-SMA, Col4α3 expression and cell migration. All these inhibitors blocked the downstream pathway activation in addition to clearly preventing the activation of its upstream molecules, indicating the presence of a feedback loop system that may boost the upstream events. Furthermore, the FDA-approved drug trametinib (10 nM) blunted TGF-ß1-induced mTORC1 activation and downstream pathogenic alterations through ERK1/2 inhibition, which opens a therapeutic avenue for the treatment of PVR in the future.


Assuntos
Transição Epitelial-Mesenquimal , Sistema de Sinalização das MAP Quinases , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , NADPH Oxidase 4/metabolismo , Epitélio Pigmentado da Retina/patologia , Fator de Crescimento Transformador beta1/metabolismo , Linhagem Celular , Ativação Enzimática , Fibrose , Humanos , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo , Transdução de Sinais
18.
Opt Lett ; 45(17): 4778-4781, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32870855

RESUMO

Real-time spectrum sensing is crucial to enable dynamic spectrum sharing for ubiquitous wireless communication with seamless high-quality wireless services. In this contribution, we demonstrate a reconfigurable real-time spectrum sensing photonic integrated chip (RTSS-PIC) for millimeter-wave (mm-wave) signals, based on the temporal discrimination of multi-channel input frequencies by the peak group delays of cascaded ring resonators. Large group delays and wide bandwidths are realized by the strategic tuning of thermal phase shifters. To make the spectrum sensing fully reconfigurable, positive and negative group delay profiles are utilized. Furthermore, a unique frequency-to-time mapping technique is introduced to analyze all input channels in real time. To illustrate the method, real-time spectrum sensing for two different mm-wave signals are finally tested by full-wave simulations of the proposed RTSS-PIC.

19.
Phys Rev Lett ; 125(11): 117206, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32975979

RESUMO

We present a combination of thermodynamic and dynamic experimental signatures of a disorder driven dynamic cooperative paramagnet in a 50% site diluted triangular lattice spin-1/2 system: Y_{2}CuTiO_{6}. Magnetic ordering and spin freezing are absent down to 50 mK, far below the Curie-Weiss scale (-θ_{CW}) of ∼134 K. We observe scaling collapses of the magnetic field and temperature dependent magnetic heat capacity and magnetization data, respectively, in conformity with expectations from the random singlet physics. Our experiments establish the suppression of any freezing scale, if at all present, by more than 3 orders of magnitude, opening a plethora of interesting possibilities such as disorder stabilized long range quantum entangled ground states.

20.
Soft Matter ; 16(12): 3050-3062, 2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32133476

RESUMO

Enzymes are dynamical macromolecules and their conformation can be altered via local fluctuations of side chains, large scale loop and even domain motions which are intimately linked to their function. Herein, we have addressed the role of dynamic flexibility in the catalytic activity of a thermostable enzyme almond beta-glucosidase (BGL). Optical spectroscopy and classical molecular dynamics (MD) simulation were employed to study the thermal stability, catalytic activity and dynamical flexibility of the enzyme. An enzyme assay reveals high thermal stability and optimum catalytic activity at 333 K. Polarization-gated fluorescence anisotropy measurements employing 8-anilino-1-napthelenesulfonic acid (ANS) have indicated increasing flexibility of the enzyme with an increase in temperature. A study of the atomic 3D structure of the enzyme shows the presence of four loop regions (LRs) strategically placed over the catalytic barrel as a lid. MD simulations have indicated that the flexibility of BGL increases concurrently with temperature through different fluctuating characteristics of the enzyme's LRs. Principal Component Analysis (PCA) and the Steered Molecular Dynamics (SMD) simulation manifest the gatekeeper role of the four LRs through their dynamic fluctuations surrounding the active site which controls the catalytic activity of BGL.


Assuntos
Prunus dulcis/enzimologia , beta-Glucosidase/química , Domínio Catalítico , Estabilidade Enzimática , Simulação de Dinâmica Molecular , Conformação Proteica , Estrutura Secundária de Proteína , Prunus dulcis/química , Temperatura , Trifolium/química , Trifolium/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA