Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(38): e2205454119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36095190

RESUMO

Trastuzumab is the first-line therapy for human epidermal growth factor receptor 2-positive (HER2+) breast cancer, but often patients develop acquired resistance. Although other agents are in clinical use to treat trastuzumab-resistant (TR) breast cancer; still, the patients develop recurrent metastatic disease. One of the primary mechanisms of acquired resistance is the shedding/loss of the HER2 extracellular domain, where trastuzumab binds. We envisioned any new agent acting downstream of the HER2 should overcome trastuzumab resistance. The mixed lineage kinase 3 (MLK3) activation by trastuzumab is necessary for promoting cell death in HER2+ breast cancer. We designed nanoparticles loaded with MLK3 agonist ceramide (PPP-CNP) and tested their efficacy in sensitizing TR cell lines, patient-derived organoids, and patient-derived xenograft (PDX). The PPP-CNP activated MLK3, its downstream JNK kinase activity, and down-regulated AKT pathway signaling in TR cell lines and PDX. The activation of MLK3 and down-regulation of AKT signaling by PPP-CNP induced cell death and inhibited cellular proliferation in TR cells and PDX. The apoptosis in TR cells was dependent on increased CD70 protein expression and caspase-9 and caspase-3 activities by PPP-CNP. The PPP-CNP treatment alike increased the expression of CD70, CD27, cleaved caspase-9, and caspase-3 with a concurrent tumor burden reduction of TR PDX. Moreover, the expressions of CD70 and ceramide levels were lower in TR than sensitive HER2+ human breast tumors. Our in vitro and preclinical animal models suggest that activating the MLK3-CD70 axis by the PPP-CNP could sensitize/overcome trastuzumab resistance in HER2+ breast cancer.


Assuntos
Antineoplásicos Imunológicos , Neoplasias da Mama , Ligante CD27 , Resistencia a Medicamentos Antineoplásicos , MAP Quinase Quinase Quinases , Nanopartículas , Trastuzumab , Animais , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Ligante CD27/metabolismo , Caspase 3/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Ceramidas/química , Feminino , Humanos , MAP Quinase Quinase Quinases/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-2/análise , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
2.
Mol Pharmacol ; 99(1): 1-16, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33130557

RESUMO

Aberrant activation of Wnt/ß-catenin axis occurs in several gastrointestinal malignancies due to inactivating mutations of adenomatous polyposis coli (in colorectal cancer) or activating mutations of ß-catenin itself [in hepatocellular carcinoma (HCC)]. These lead to ß-catenin stabilization, increase in ß-catenin/T-cell factor (TCF)-mediated transcriptional activation, and target gene expression, many of which are involved in tumor progression. While studying pharmaceutical agents that can target ß-catenin in cancer cells, we observed that the plant compound berberine (BBR), a potent activator of AMP-activated protein kinase (AMPK), can reduce ß-catenin expression and downstream signaling in HCC cells in a dose-dependent manner. More in-depth analyses to understand the mechanism revealed that BBR-induced reduction of ß-catenin occurs independently of AMPK activation and does not involve transcriptional or post-translational mechanisms. Pretreatment with protein synthesis inhibitor cycloheximide antagonized BBR-induced ß-catenin reduction, suggesting that BBR affects ß-catenin translation. BBR treatment also antagonized mammalian target of rapamycin (mTOR) activity and was associated with increased recruitment of eukaryotic translation initiation factor 4E-binding protein (4E-BP) 1 in the translational complex, which was revealed by 7-methyl-cap-binding assays, suggesting inhibition of cap-dependent translation. Interestingly, knocking down 4E-BP1 and 4E-BP2 significantly attenuated BBR-induced reduction of ß-catenin levels and expression of its downstream target genes. Moreover, cells with 4E-BP knockdown were resistant to BBR-induced cell death and were resensitized to BBR after pharmacological inhibition of ß-catenin. Our findings indicate that BBR antagonizes ß-catenin pathway by inhibiting ß-catenin translation and mTOR activity and thereby reduces HCC cell survival. These also suggest that BBR could be used for targeting HCCs that express mutated/activated ß-catenin variants that are currently undruggable. SIGNIFICANCE STATEMENT: ß-catenin signaling is aberrantly activated in different gastrointestinal cancers, including hepatocellular carcinoma, which is currently undruggable. In this study we describe a novel mechanism of targeting ß-catenin translation via utilizing a plant compound, berberine. Our findings provide a new avenue of targeting ß-catenin axis in cancer, which can be utilized toward the designing of effective therapeutic strategies to combat ß-catenin-dependent cancers.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Berberina/farmacologia , Carcinoma Hepatocelular/metabolismo , Proteínas de Ciclo Celular/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Neoplasias Hepáticas/metabolismo , beta Catenina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Carcinoma Hepatocelular/genética , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Fatores de Iniciação em Eucariotos/antagonistas & inibidores , Fatores de Iniciação em Eucariotos/genética , Células HEK293 , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/fisiologia , beta Catenina/antagonistas & inibidores , beta Catenina/genética
3.
Langmuir ; 34(38): 11602-11611, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30173524

RESUMO

Organization and distribution of lipids in cellular membranes play an important role in a diverse range of biological processes, such as membrane trafficking and signaling. Here, we present the combined experimental and simulated results to elucidate the phase behavioral features of ganglioside monosialo 1 (GM1)-containing mixed monolayer of the lipids 1,2-dimyristoyl- sn-glycero-3-phosphocholine (DMPC) and cholesterol (CHOL). Two monolayers having compositions DMPC-CHOL and GM1-DMPC-CHOL are investigated at air-water and air-solid interfaces using Langmuir-Blodgett experiments and scanning electron microscopy (SEM), respectively, to ascertain the phase behavior change of the monolayers. Surface pressure isotherms and SEM imaging of domain formation indicate that addition of GM1 to the monolayer at low surface pressure causes a fluidization of the system but once the system attains the surface pressure corresponding to its liquid-condensed phase, the monolayer becomes more ordered than the system devoid of GM1 and interacts among each other more cooperatively. Besides, the condensing effect of cholesterol on the DMPC monolayer was also verified by our experiments. Apart from these, the effects induced by GM1 on the phase behavior of the binary mixture of DMPC-CHOL were studied with and without applying liquid-expanded (LE)-liquid-condensed (LC) equilibrium surface pressure using molecular dynamics (MD) simulation. Our molecular dynamics (MD) simulation results give an atomistic-level explanation of our experimental findings and furnish a similar conclusion.


Assuntos
Colesterol/química , Dimiristoilfosfatidilcolina/química , Gangliosídeo G(M1)/química , Membranas Artificiais , Animais , Difusão , Gangliosídeo G(M1)/isolamento & purificação , Cabras , Microdomínios da Membrana/química , Simulação de Dinâmica Molecular , Transição de Fase , Pressão
4.
J Biol Chem ; 290(36): 21865-75, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26198640

RESUMO

Prostate cancer (PCa) is one of the most frequently diagnosed cancers in men with limited treatment options for the hormone-resistant forms. Development of novel therapeutic options is critically needed to target advanced forms. Here we demonstrate that combinatorial treatment with the thiazolidinedione troglitazone (TZD) and TNF-related apoptosis-inducing ligand (TRAIL) can induce significant apoptosis in various PCa cells independent of androgen receptor status. Because TZD is known to activate AMP-activated protein kinase (AMPK), we determined whether AMPK is a molecular target mediating this apoptotic cascade by utilizing PCa cell lines stably overexpressing AMPKα1 dominant negative (C4-2-DN) or empty vector (C4-2-EV). Our results indicated a significantly higher degree of apoptosis with TRAIL-TZD combination in C4-2-EV cells compared with C4-2-DN cells. Similarly, results from a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed a larger reduction of viability of C4-2-EV cells compared with C4-2-DN cells when treated with TRAIL-TZD, thus suggesting that C4-2-DN cells were more apoptosis-resistant. Additionally, siRNA-mediated knockdown of endogenous AMPKα1 expression showed a reduction of TRAIL-TZD-induced apoptosis, further confirming the participation of AMPK in mediating this apoptosis. Apoptosis induction by this combinatorial treatment was also associated with a cleavage of ß-catenin that was inhibited in both C4-2-DN cells and those cells in which AMPKα1 was knocked down. In addition, time course studies showed an increase in pACC(S79) (AMPK target) levels coinciding with the time of apoptosis. These studies indicate the involvement of AMPK in TRAIL-TZD-mediated apoptosis and ß-catenin cleavage and suggest the possibility of utilizing AMPK as a therapeutic target in apoptosis-resistant prostate cancer.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose/efeitos dos fármacos , Cromanos/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Tiazolidinedionas/farmacologia , Proteínas Quinases Ativadas por AMP/genética , Western Blotting , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Humanos , Masculino , PPAR gama/agonistas , PPAR gama/genética , PPAR gama/metabolismo , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Tempo , Troglitazona , beta Catenina/metabolismo
5.
J Biol Chem ; 290(35): 21705-12, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26152725

RESUMO

Human epidermal growth factor receptor 2 (HER2) is amplified in ∼ 15-20% of human breast cancer and is important for tumor etiology and therapeutic options of breast cancer. Up-regulation of HER2 oncogene initiates cascades of events cumulating to the stimulation of transforming PI3K/AKT signaling, which also plays a dominant role in supporting cell survival and efficacy of HER2-directed therapies. Although investigating the underlying mechanisms by which HER2 promotes cell survival, we noticed a profound reduction in the kinase activity of a pro-apoptotic mixed lineage kinase 3 (MLK3) in HER2-positive (HER2+) but not in HER2-negative (HER2-) breast cancer tissues, whereas both HER2+ and HER2- tumors expressed a comparable level of MLK3 protein. Furthermore, the kinase activity of MLK3 was inversely correlated with HER2+ tumor grades. Moreover, HER2-directed drugs such as trastuzumab and lapatinib as well as depletion of HER2 or HER3 stimulated MLK3 kinase activity in HER2+ breast cancer cell lines. In addition, the noted inhibitory effect of HER2 on MLK3 kinase activity was mediated via its phosphorylation on Ser(674) by AKT and that pharmacological inhibitors of PI3K/AKT prevented trastuzumab- and lapatinib-induced stimulation of MLK3 activity. Consistent with the pro-apoptotic function of MLK3, stable knockdown of MLK3 in the HER2+ cell line blunted the pro-apoptotic effects of trastuzumab and lapatinib. These findings suggest that HER2 activation inhibits the pro-apoptotic function of MLK3, which plays a mechanistic role in mediating anti-tumor activities of HER2-directed therapies. In brief, MLK3 represents a newly recognized integral component of HER2 biology in HER2+ breast tumors.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , MAP Quinase Quinase Quinases/metabolismo , Receptor ErbB-2/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Regulação para Baixo , Feminino , Humanos , MAP Quinase Quinase Quinases/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases , Modelos Biológicos , Terapia de Alvo Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-3/antagonistas & inibidores , Receptor ErbB-3/metabolismo , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
8.
Cancer Cell Int ; 15: 74, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26225121

RESUMO

BACKGROUND: Squamous cell carcinoma of the oral cavity (SCCOC) is the dominant origin of cancer associated mortality. Previous findings by our study reported that acquisition of anoikis resistance has a significant role in tumor progression of oral cavity. Several genes were over-expressed in anoikis-resistant cells under detached conditions which we confirmed earlier by microarray. Normal oral squamous epithelia grow adherent to a basement membrane, and when detached from the extracellular matrix, undergoes programmed cell death. The acquisition of anoikis-resistance is crucial phenomena in oral tumor advancement. In the current study, we have identified S100A7 expression as contributing factor for anoikis resistance and tumorigenicity in human oral cancer cells. Further, we have explored that elevated S100A7 expression in anoikis-sensitive oral keratinocytes and cancer cells reshape them more resistant to anoikis and apoptosis inducers via activation of cellular intrinsic and extrinsic avenue. METHODS: A subset of human cancer cell lines TU167, JMAR, JMARC39, JMARC42 and MDA-MB-468 were utilized for the generation of resistant stable cell lines. Further, immunohistochemistry, western blot and immunoprecipitation, assays of apoptosis, soft agar assay, orthotopic animal model and signaling elucidation were performed to establish our hypothesis. RESULTS: S100A7 gene is found to be responsible for anoikis resistance and tumorigenicity in human oral cancer cells. We have observed up-regulation of S100A7 in anoikis resistant cell lines, orthotropic model and patients samples with head and neck cancer. It is also noticed that secretion of S100A7 protein in conditioned medium by anoikis resistant head & neck cancer cell and in saliva of head and neck cancer patients. Up-regulation of S100A7 expression has triggered enhanced tumorigenicity and anchorage-independent growth of cancer cells through Akt phosphorylation leading to development of aniokis resistance in head and neck cancer cells. CONCLUSIONS: These data have led us to conclude that S100A7 is the major contributing factor in mediating anoikis-resistance of oral cancer cells and local tumor progression, and S100A7 might be useful as diagnostic marker for early detection of primary and recurrent squamous cell cancer.

9.
Proc Natl Acad Sci U S A ; 109(21): 8149-54, 2012 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-22566623

RESUMO

Nuclear protein peptidyl-prolyl isomerase Pin1-mediated prolyl isomerization is an essential and novel regulatory mechanism for protein phosphorylation. Therefore, tight regulation of Pin1 localization and catalytic activity is crucial for its normal nuclear functions. Pin1 is commonly dysregulated during oncogenesis and likely contributes to these pathologies; however, the mechanism(s) by which Pin1 catalytic activity and nuclear localization are increased is unknown. Here we demonstrate that mixed-lineage kinase 3 (MLK3), a MAP3K family member, phosphorylates Pin1 on a Ser138 site to increase its catalytic activity and nuclear translocation. This phosphorylation event drives the cell cycle and promotes cyclin D1 stability and centrosome amplification. Notably, Pin1 pSer138 is significantly up-regulated in breast tumors and is localized in the nucleus. These findings collectively suggest that the MLK3-Pin1 signaling cascade plays a critical role in regulating the cell cycle, centrosome numbers, and oncogenesis.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Neoplasias da Mama/metabolismo , Centrossomo/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Peptidilprolil Isomerase/metabolismo , Transdução de Sinais/fisiologia , Neoplasias da Mama/genética , Catálise , Ciclo Celular/fisiologia , Núcleo Celular/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Ciclina D1/metabolismo , Feminino , Proteínas de Fluorescência Verde/genética , Células HEK293 , Células HeLa , Humanos , MAP Quinase Quinase Quinases/genética , Peptidilprolil Isomerase de Interação com NIMA , Peptidilprolil Isomerase/genética , Fosforilação/fisiologia , Serina/metabolismo , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
10.
J Environ Manage ; 152: 36-42, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25617866

RESUMO

Chlorpyrifos [O,O-diethyl O-(3,5,6-trichloro-2-pyridinol) phosphorothioate] is used worldwide as an agricultural insecticide against a broad spectrum of insect pests of economically important crops including rice, and soil application to control termites. The insecticide mostly undergoes hydrolysis to diethyl thiophosphoric acid (DETP) and 3,5,6-trichloro-2-pyridinol (TCP), and negligible amounts of other intermediate products. In a laboratory-cum-greenhouse study, chlorpyrifos, applied at a rate of 10 mg kg(-1) soil to five tropical rice soils of wide physico-chemical variability, degraded with a half-life ranging from 27.07 to 3.82 days. TCP was the major metabolite under both non-flooded and flooded conditions. Chlorpyrifos degradation had significant negative relationship with electrical conductivity (EC), cation exchange capacity (CEC), clay and sand contents of the soils under non-flooded conditions. Results indicate that degradation of chlorpyrifos was accelerated with increase in its application frequency, across the representative rice soils. Management regimes including moisture content and presence or absence of rice plants also influenced the process. Biotic factors also play an important role in the degradation of chlorpyrifos as demonstrated by its convincing degradation in mineral salts medium inoculated with non-sterile soil suspension.


Assuntos
Agricultura/métodos , Clorpirifos/química , Inseticidas/química , Poluentes do Solo/química , Meia-Vida , Hidrólise , Índia , Fosfatos/química , Piridonas/química , Solo/química , Clima Tropical
11.
J Med Chem ; 67(12): 10321-10335, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38836562

RESUMO

Breast cancer remains a global health challenge, and innovative strategies are required to target estrogen receptor α (ERα), a key player in its development. This study investigates the potential of campesterol, a natural phytosterol, as an ERα inhibitor for breast cancer. Our approach integrates in silico, in vitro, and ex vivo experiments to assess the therapeutic potential of campesterol. In silico analyses highlight campesterol as a promising ERα ligand with favorable binding affinities and dynamic properties. Structural analysis reveals conformational changes in ERα upon campesterol binding. In vitro studies confirm the selective growth inhibition of campesterol against ERα-positive breast cancer cells. This study extends to ER+ breast cancer patient-derived organoids (PDOs), showing the effectiveness of campesterol in ERα-positive breast cancer PDOs. Importantly, it emphasizes the receptor-specific nature of campesterol, providing insights into its context-dependent action. In conclusion, campesterol displays potential as an ERα inhibitor, offering new avenues for ER+ breast cancer treatment.


Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/metabolismo , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Feminino , Descoberta de Drogas , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Fitosteróis/farmacologia , Fitosteróis/química , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Colesterol/análogos & derivados
12.
BMC Cancer ; 13: 273, 2013 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-23731702

RESUMO

BACKGROUND: Tamoxifen (TAM) is widely used in the chemotherapy of breast cancer and as a preventive agent against recurrence after surgery. However, extended TAM administration for breast cancer induces increased VEGF levels in patients, promoting new blood vessel formation and thereby limiting its efficacy. Celecoxib (CXB), a selective COX-2 inhibitor, suppresses VEGF gene expression by targeting the VEGF promoter responsible for its inhibitory effect. For this study, we had selected CXB as non-steroidal anti-inflammatory drug in combination with TAM for suppressing VEGF expression and simultaneously reducing doses of both the drugs. METHODS: The effects of CXB combined with TAM were examined in two human breast cancer cell lines in culture, MCF7 and MDA-MB-231. Assays of proliferation, apoptosis, angiogenesis, metastasis, cell cycle distribution, and receptor signaling were performed. RESULTS: Here, we elucidated how the combination of TAM and CXB at nontoxic doses exerts anti-angiogenic effects by specifically targeting VEGF/VEGFR2 autocrine signaling through ROS generation. At the molecular level, TAM-CXB suppresses VHL-mediated HIF-1α activation, responsible for expression of COX-2, MMP-2 and VEGF. Besides low VEGF levels, TAM-CXB also suppresses VEGFR2 expression, confirmed through quantifying secreted VEGF levels, luciferase and RT-PCR studies. Interestingly, we observed that TAM-CXB was effective in blocking VEGFR2 promoter induced expression and further 2 fold decrease in VEGF levels was observed in combination than TAM alone in both cell lines. Secondly, TAM-CXB regulated VEGFR2 inhibits Src expression, responsible for tumor progression and metastasis. FACS and in vivo enzymatic studies showed significant increase in the reactive oxygen species upon TAM-CXB treatment. CONCLUSIONS: Taken together, our experimental results indicate that this additive combination shows promising outcome in anti-metastatic and apoptotic studies. In a line, our preclinical studies evidenced that this additive combination of TAM and CXB is a potential drug candidate for treatment of breast tumors expressing high levels of VEGF and VEGFR2. This ingenious combination might be a better tailored clinical regimen than TAM alone for breast cancer treatment.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Comunicação Autócrina/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neovascularização Patológica , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Western Blotting , Celecoxib , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Camundongos , Neovascularização Patológica/induzido quimicamente , Pirazóis/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/administração & dosagem , Tamoxifeno/administração & dosagem , Tamoxifeno/efeitos adversos , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
13.
J Basic Microbiol ; 53(12): 972-84, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23681643

RESUMO

Beneficial plant-associated bacteria play a key role in supporting and/or promoting plant growth and health. Plant growth promoting bacteria present in the rhizosphere of crop plants can directly affect plant metabolism or modulate phytohormone production or degradation. We isolated 355 bacteria from the rhizosphere of rice plants grown in the farmers' fields in the coastal rice field soil from five different locations of the Ganjam district of Odisha, India. Six bacteria producing both ACC deaminase (ranging from 603.94 to 1350.02 nmol α-ketobutyrate mg(-1) h(-1) ) and indole acetic acid (IAA; ranging from 10.54 to 37.65 µM ml(-1) ) in pure cultures were further identified using polyphasic taxonomy including BIOLOG((R)) , FAME analysis and the 16S rRNA gene sequencing. Phylogenetic analyses of the isolates resulted into five major clusters to include members of the genera Bacillus, Microbacterium, Methylophaga, Agromyces, and Paenibacillus. Seed inoculation of rice (cv. Naveen) by the six individual PGPR isolates had a considerable impact on different growth parameters including root elongation that was positively correlated with ACC deaminase activity and IAA production. The cultures also had other plant growth attributes including ammonia production and at least two isolates produced siderophores. Study indicates that presence of diverse rhizobacteria with effective growth-promoting traits, in the rice rhizosphere, may be exploited for a sustainable crop management under field conditions.


Assuntos
Bactérias/metabolismo , Carbono-Carbono Liases/metabolismo , Ácidos Indolacéticos/metabolismo , Oryza/microbiologia , Rizosfera , Microbiologia do Solo , Bactérias/isolamento & purificação , Índia , Oryza/fisiologia
14.
Oncogene ; 42(14): 1132-1143, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36813855

RESUMO

Mixed Lineage Kinase 3 (MLK3) is a viable target for neoplastic diseases; however, it is unclear whether its activators or inhibitors can act as anti-neoplastic agents. We reported that the MLK3 kinase activity was higher in triple-negative (TNBC) than in hormone receptor-positive human breast tumors, where estrogen inhibited MLK3 kinase activity and provided a survival advantage to ER+ breast cancer cells. Herein, we show that in TNBC, the higher MLK3 kinase activity paradoxically promotes cancer cell survival. Knockdown of MLK3 or MLK3 inhibitors, CEP-1347 and URMC-099, attenuated tumorigenesis of TNBC cell line and Patient-Derived (PDX) xenografts. The MLK3 kinase inhibitors decreased both the expression and activation of MLK3, PAK1, and NF-kB protein and caused cell death in TNBC breast xenografts. RNA-seq analysis identified several genes downregulated by MLK3 inhibition, and the NGF/TrkA MAPK pathway was significantly enriched in tumors sensitive to growth inhibition by MLK3 inhibitors. The TNBC cell line unresponsive to kinase inhibitor had substantially lower TrkA, and overexpression of TrkA restored the sensitivity to MLK3 inhibition. These results suggest that the functions of MLK3 in breast cancer cells depend on downstream targets in TNBC tumors expressing TrkA, and MLK3 kinase inhibition may provide a novel targeted therapy.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , MAP Quinase Quinase Quinases/metabolismo , Estrogênios , Receptores Proteína Tirosina Quinases , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno
15.
J Cell Biochem ; 113(1): 184-93, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21882228

RESUMO

Nowadays, novel pharmacies have been screened from plants. Among them are the peptides, which show multiple biotechnological activities. In this report, a small peptide (Ala-Trp-Lys-Leu-Phe-Asp-Asp-Gly-Val) with a molecular mass of 1,050 Da was purified from Cycas revoluta seeds by using reversed-phase liquid chromatography. This peptide shows clear deleterious effects against human epidermoid cancer (Hep2) and colon carcinoma cells (HCT15). It caused inhibition of cancer cell proliferation and further disruption of nucleosome structures, inducing apoptosis by direct DNA binding. A remarkable antibacterial activity was also observed in this same peptide. Nevertheless, no significant lysis of normal RBC cells was observed in the presence of peptide. Additionally, an acetylation at the N-termini portion is able to reduce both activities. Bioinformatics tools were also utilized for construction of a three-dimensional model showing a single amphipathic helix. Since in vitro binding studies show that the target of this peptide seems to be DNA, theoretical docking studies were also performed to better understand the interaction between peptide and nucleic acids and also to shed some light on the acetyl group role. Firstly, binding studies showed that affinity contacts basically occur due to electrostatic attraction. The complex peptide-ssDNA was clearly oriented by residues Ala(1), Lys(3), and Asp(6), which form several hydrogen bonds that are able to stabilize the complex. When acetyl was added, hydrogen bonds are broken, reducing the peptide affinity. In summary, it seems that information here provided could be used to design a novel derivative of this peptide which a clear therapeutic potential.


Assuntos
Antibacterianos/isolamento & purificação , Antineoplásicos/isolamento & purificação , Proteínas de Ligação a DNA/isolamento & purificação , Extratos Vegetais/farmacologia , Sequência de Aminoácidos , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas , Ciclo Celular , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo , Cycas , Humanos , Modelos Moleculares , Nucleossomos/efeitos dos fármacos , Nucleossomos/metabolismo , Peptídeos/análise , Peptídeos/química , Peptídeos/metabolismo , Extratos Vegetais/análise , Extratos Vegetais/química , Conformação Proteica , Sementes , Análise de Sequência de Proteína
16.
J Exp Ther Oncol ; 10(2): 139-53, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23350354

RESUMO

Cellular redox changes have emerged as a pivotal and proximal event in cancer. PKI 166 is used to determine the effects of redox sensitive inhibition of EGFR, metastasis and apoptosis in epidermoid carcinoma. Cytotoxicity study of PKI 166 (IC50 1.0 microM) treated A431 cells were performed by MTT assay for 48 and 72 hrs. Morphological analysis of PKI 166 treated A431 cells for 48 hrs. revealed the cell shrinkage, loss of filopodia and lamellipodia by phase contrast and SEM images in dose dependent manner. It has cytotoxic effects through inhibiting cellular proliferation, leads to the induction of apoptosis, as increased fraction of sub-G1 phase of the cell cycle, chromatin condensation and DNA ladder. It inhibited cyclin-D1 and cyclin-E expression and induced p53, p21 expression in dose dependent manner. Consequently, an imbalance of Bax/Bcl-2 ratio triggered caspase cascade and subsequent cleavage of PARP, thereby shifting the balance in favour of apoptosis. PKI 166 treatment actively stimulated reactive oxygen species (ROS) and mitochondrial membrane depolarization. It inhibited some metastatic properties of A431 cells supressing colony formation by soft agar assay and inhibition of MMP 9 activity by gelatin zymography and western blot analysis. PKI 166 inhibited growth factor induced phosphorylation of EGFR, Akt, MAPK, JNK and colony formation in A431 cells. Thus the inhibition of proliferation was associated with redox regulation of the caspase cascade, EGFR, Akt/PI3K, MAPK/ ERK and JNK pathway. On the other hand, increased antioxidant activity leads to decreased ROS generation inhibit the anti-proliferative and apoptotic properties of PKI 166 in A431 cells. These observations indicated PKI 166 induced redox signalling dependent inhibition of cell proliferation, metastatic properties and induction of apoptotic potential in epidermoid carcinoma.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/patologia , Caspases/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Pirimidinas/farmacologia , Pirróis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Western Blotting , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Catalase/metabolismo , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citocromos c/metabolismo , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxirredução , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Células Tumorais Cultivadas
17.
Toxicol Mech Methods ; 22(9): 711-20, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22894698

RESUMO

The immune cells use reactive oxygen species (ROS) for carrying out their normal functions while an excess amount of ROS can attack cellular components that lead to cell damage. The present study was undertaken to determine the dose as well as time dependent effects of nicotine administration on the superoxide anion generation, lipid peroxidation and antioxidant defense systems in lymphocytes. Male Wistar rats were treated with vehicle (normal saline) and nicotine [3-(1-methyl-2-pyrrolidinyl) pyridine, C(10)H(14)N(2)] (in physiological saline, pH was adjusted at 7.4 prior to injection) as indicated in a dose and duration fashion and the superoxide anion generation, lipid peroxidation, and antioxidant enzymes status were monitored. Superoxide anion generation, lipid peroxidation and oxidized glutathione levels were increased significantly (P < 0.05), and reduced glutathione level, activity of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glutathione-s-transferase were decreased significantly (P < 0.05) with the increasing dose and duration of nicotine treatment. The highest changes in lymphocytes were observed at the dose of 1.0 mg/kg/day for 7 days. It may be concluded that nicotine is able to enhance the production of ROS that produced oxidative stress in lymphocytes in a dose and time dependent manner.


Assuntos
Antioxidantes/metabolismo , Linfócitos/efeitos dos fármacos , Nicotina/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Superóxidos/metabolismo , Animais , Relação Dose-Resposta a Droga , Injeções Intraperitoneais , Peroxidação de Lipídeos/efeitos dos fármacos , Linfócitos/enzimologia , Linfócitos/metabolismo , Masculino , Ratos , Ratos Wistar , Fatores de Tempo
18.
Environ Sci Pollut Res Int ; 29(2): 1858-1874, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34363159

RESUMO

The floodplain wetland habitat in the lower Gangetic plains of West Bengal played a significant role in protecting from environmental degradation like pollution, lowering groundwater table, natural hazards, and others as well as supports for human wellbeing. Thus, it is needed to investigate the health status of wetlands and suggest restoration strategies to protect the livelihood patterns dependent on wetlands. This paper presents the health of the wetland ecosystem by comprising the wetland ecosystem health index (WHI) in 2011 and 2018 at the block level of Malda district, as a part of the lower Gangetic flood plain using the pressure-state-response model (PSR model) and AHP method. A total number of six Landsat satellite images and statistical census data were used to determine the wetland health. Wetlands are classified as very healthy (2.81-3.33), healthy (2.41-2.80), sub-healthy (2.01-2.40), unhealthy (1.61-2.00), and sick (0-1.60) category on the basis of the wetland ecosystem health index score. The results of this study showed that the wetlands located surrounding English Bazar, Manikchak, Ratua-II, and Kaliachak-II blocks have a sub-healthy to very healthy condition in 2011 but changed to unhealthy to sick category in 2018 due to the increase of rapid urbanization, population density, and development activities. These areas have belonged to the sub-healthy to sick category in the year 2011 as well as 2018 due to high wetland pressure. Our observation reveals that the ecosystem service value provided by wetlands decreased by 62.51% and 20.46 in the observed period. Management of WEH should emphasize on large (>100 ha) and medium (51-100 ha) sizes of wetlands in the Diara region of West Bengal. Developing local-level institutions and setting restoration goals are useful strategies to manage wetland resources, and protecting biodiversity should be guided by the Government organization and NGOs.


Assuntos
Áreas Alagadas , Conservação dos Recursos Naturais , Inundações , Índia , Rios
19.
Cell Death Dis ; 13(7): 581, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35789155

RESUMO

The incidence and mortality of hepatocellular carcinoma (HCC) are on a rise in the Western countries including US, attributed mostly to late detection. Sorafenib has been the first-line FDA-approved drug for advanced unresectable HCC for almost a decade, but with limited efficacy due to the development of resistance. More recently, several other multi-kinase inhibitors (lenvatinib, cabozantinib, regorafenib), human monoclonal antibody (ramucirumab), and immune checkpoint inhibitors (nivolumab, pembrolizumab) have been approved as systemic therapies. Despite this, the median survival of patients is not significantly increased. Understanding of the molecular mechanism(s) that govern HCC resistance is critically needed to increase efficacy of current drugs and to develop more efficacious ones in the future. Our studies with sorafenib-resistant (soraR) HCC cells using transcription factor RT2 Profiler PCR Arrays revealed an increase in E26 transformation-specific-1 (Ets-1) transcription factor in all soraR cells. HCC TMA studies showed an increase in Ets-1 expression in advanced HCC compared to the normal livers. Overexpression or knocking down Ets-1 modulated sorafenib resistance-related epithelial-mesenchymal transition (EMT), migration, and cell survival. In addition, the soraR cells showed a significant reduction of mitochondrial damage and mitochondrial reactive oxygen species (mROS) generation, which were antagonized by knocking down Ets-1 expression. More in-depth analysis identified GPX-2 as a downstream mediator of Ets-1-induced sorafenib resistance, which was down-regulated by Ets-1 knockdown while other antioxidant pathway genes were not affected. Interestingly, knocking down GPX2 expression significantly increased sorafenib sensitivity in the soraR cells. Our studies indicate the activation of a novel Ets-1-GPX2 signaling axis in soraR cells, targeting which might successfully antagonize resistance and increase efficacy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Proteína Proto-Oncogênica c-ets-1/genética , Espécies Reativas de Oxigênio , Sorafenibe/farmacologia , Fatores de Transcrição
20.
Comput Biol Med ; 141: 105052, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34836625

RESUMO

BACKGROUND: Aloe vera extract and its bioactive compounds possess anti-proliferative properties against cancer cells. However, no detailed molecular mechanism of action studies has been reported. We have now employed a computational approach to scrutinize the molecular mechanism of lead bioactive compounds from Aloe vera that potentially inhibit DNA synthesis. METHODS: Initially, the anti-proliferative activity of Aloe vera extract was examined in human breast cancer cells (in vitro/in vivo). Later on, computational screening of bioactive compounds from Aloe vera targeting DNA was performed by molecular docking and molecular dynamics simulation. RESULTS: In-vitro and in-vivo studies confirm that Aloe vera extract effectively suppresses the growth of breast cancer cells without significant cytotoxicity towards non-cancerous normal immortal cells. Computational screening predicts that growth suppression may be due to the presence of DNA intercalating bioactive compounds (riboflavin, daidzin, aloin, etc.) contained in Aloe vera. MM/PBSA calculation showed that riboflavin has a higher binding affinity at the DNA binding sites compared to standard drug daunorubicin. CONCLUSIONS: These observations support the hypothesis that riboflavin may be exploited as an anti-proliferative DNA intercalating agent to prevent cancer and is worthy of testing for the management of cancer by performing more extensive pre-clinical and if validated clinical trials.


Assuntos
Aloe , Neoplasias , Aloe/química , DNA , Humanos , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA