Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36679720

RESUMO

We demonstrate a highly sensitive acoustic vibration sensor based on a tapered-tip optical fiber acting as a microcantilever. The tapered-tip fiber has a unique output profile that exhibits a circular fringe pattern, whose distribution is highly sensitive to the vibration of the fiber tip. A piezo transducer is used for the acoustic excitation of the fiber microcantilever, which results in a periodic bending of the tip and thereby a significant output power modulation. Using a multimode readout fiber connected to an electric spectrum analyzer, we measured the amplitude of these power modulations over the 10-50 kHz range and observed resonances over certain frequency ranges. Two types of tapered-tip fibers were fabricated with diameter values of 1.5 µm and 1.8 µm and their frequency responses were compared with a non-tapered fiber tip. Thanks to the resonance effect as well as the sensitive fringe pattern of the tapered-tip fibers, the limit of detection and the sensitivity of the fiber sensor were obtained as 0.1 nm and 15.7 V/nm, respectively, which were significantly better than the values obtained with the non-tapered fiber tip (i.e., 1.1 nm and 0.12 V/nm, respectively). The sensor is highly sensitive, easy to fabricate, low-cost, and can detect sub-nanometer displacements, which makes it a promising tool for vibration sensing, particularly in the photoacoustic sensing of greenhouse gases.


Assuntos
Fibras Ópticas , Vibração , Acústica , Análise Espectral , Transdutores
2.
Sci Rep ; 7(1): 12747, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28986584

RESUMO

This paper presents short wavelength operation of tunable thulium-doped mode-locked lasers with sweep ranges of 1702 to 1764 nm and 1788 to 1831 nm. This operation is realized by a combination of the partial amplified spontaneous emission suppression method, the bidirectional pumping mechanism and the nonlinear polarization rotation (NPR) technique. Lasing at emission bands lower than the 1800 nm wavelength in thulium-doped fiber lasers is achieved using mode confinement loss in a specially designed photonic crystal fiber (PCF). The enlargement of the first outer ring air holes around the core region of the PCF attenuates emissions above the cut-off wavelength and dominates the active region. This amplified spontaneous emission (ASE) suppression using our presented PCF is applied to a mode-locked laser cavity and is demonstrated to be a simple and compact solution to widely tunable all-fiber lasers.

3.
J Biomed Opt ; 21(5): 56006, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27228504

RESUMO

Among the most important challenges of microscopy­even more important than the resolution enhancement, especially in biological and neuroscience applications­is noninvasive and label-free imaging deeper into live scattering samples. However, the fundamental limitation on imaging depth is the signal-to-background ratio in scattering biological tissues. Here, using a vibrating microscope objective in conjunction with a lock-in amplifier, we demonstrate the background cancellation in imaging the samples surrounded by turbid and scattering media, which leads to more clear images deeper into the samples. Furthermore, this technique offers the localization and resolution enhancement as well as resolves ambiguities in signal interpretation, using a single-color laser. This technique is applicable to most nonlinear as well as some linear point-scanning optical microscopies.


Assuntos
Lasers , Microscopia Óptica não Linear , Luz , Microscopia , Microscopia Óptica não Linear/instrumentação , Cintilografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA