Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
J Food Sci Technol ; 57(2): 683-692, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32116377

RESUMO

Refractance window (RW) drying of mango pulp has shown good quality retention compared to conventional drying methods. Different pulp thickness (2, 3 and 4 mm) and drying temperature (85, 90 and 95 °C) were optimized for RW drying of mango pulp for responses as drying time, ascorbic acid, total phenolics content (TPC) and hardness of mango leather. Face-centered central composite design was performed for optimization using Design-Expert software. RW drying of 2 mm thick mango pulp took the shortest drying time, however lower ascorbic acid and TPC were determined as compared to 3 mm and 4 mm thick pulp mango leather. Hardness of RW dried mango leather was determined to be in the chewable range as 3.62-5.33 N. The optimum solution generated for RW drying temperature and pulp thickness was 95 °C and 2.49 mm, respectively. The drying time was 22.5 min with high quality retention in terms of ascorbic acid, TPC and hardness as 62.33 mg/100 g DW, 7.72 mg GAE/g DW and 4.60 N respectively of dried product with desirability function obtained was 0.969. More nutrients were preserved in mango leather as well as microstructure of mango powder was observed as smooth and flaky with uniform thickness of powder particles with RW drying process when compared with tray and oven drying at 95 °C drying temperature and 2.50 mm mango pulp thickness.

3.
J Food Sci ; 81(4): C858-66, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26970442

RESUMO

This study describes major changes in phytochemical composition of orthodox tea (Camellia sinensis var. Assamica) oxidized under compressed air (CA). The experiments for oxidation were conducted under air pressure (101, 202, and 303 kPa) for 150 min. Relative change in the concentrations of caffeine, catechins, theaflavins (TF), and thearubigins (TR) were analyzed. Effect of CA pressure was found to be nonsignificant in regulating caffeine concentration during oxidation. But degradation in different catechins as well as formation of different TF was significantly affected by CA pressure. At high CA pressure, TF showed highest peak value. TR was found to have slower rate of formation during initial phase of oxidation than TF. Even though the rate of TR formation was significantly influenced by CA, a portion of catechins remained unoxidized at end of oxidation. Except caffeine, the percent change in rate of formation or degradation were more prominent at 202 kPa.


Assuntos
Ar , Antioxidantes/análise , Camellia sinensis/química , Catequina/análise , Manipulação de Alimentos/métodos , Pressão , Chá/química , Biflavonoides/análise , Cafeína/análise , Catequina/análogos & derivados , Cromatografia Líquida de Alta Pressão , Ar Comprimido , Humanos , Oxirredução , Oxigênio , Compostos Fitoquímicos/análise , Extratos Vegetais/química , Polifenóis/análise , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA