RESUMO
The mechanisms underlying the dichotomic cortical/basal ganglia dopaminergic abnormalities in schizophrenia are unclear. Astrocytes are important non-neuronal modulators of brain circuits, but their role in dopaminergic system remains poorly explored. Microarray analyses, immunohistochemistry, and two-photon laser scanning microscopy revealed that Dys1 hypofunction increases the reactivity of astrocytes, which express only the Dys1A isoform. Notably, behavioral and electrochemical assessments in mice selectively lacking the Dys1A isoform unraveled a more prominent impact of Dys1A in behavioral and dopaminergic/D2 alterations related to basal ganglia, but not cortical functioning. Ex vivo electron microscopy and protein expression analyses indicated that selective Dys1A disruption might alter intracellular trafficking in astrocytes, but not in neurons. In agreement, Dys1A disruption only in astrocytes resulted in decreased motivation and sensorimotor gating deficits, increased astrocytic dopamine D2 receptors and decreased dopaminergic tone within basal ganglia. These processes might have clinical relevance because the caudate, but not the cortex, of patients with schizophrenia shows a reduction of the Dys1A isoform. Therefore, we started to show a hitherto unknown role for the Dys1A isoform in astrocytic-related modulation of basal ganglia behavioral and dopaminergic phenotypes, with relevance to schizophrenia.
Assuntos
Dopamina , Disbindina , Esquizofrenia , Animais , Camundongos , Astrócitos/metabolismo , Gânglios da Base/metabolismo , Dopamina/metabolismo , Disbindina/metabolismo , Esquizofrenia/genéticaRESUMO
The main excitatory inputs to the striatum arising from the cortex and the thalamus innervate both striatal spiny projection neurons and interneurons. These glutamatergic inputs to striatal GABAergic interneurons have been suggested to regulate the spike timing of striatal projection neurons via feedforward inhibition. Understanding how different excitatory inputs are integrated within the striatal circuitry and how they regulate striatal output is crucial for understanding basal ganglia function and related behaviors. Here, using VGLUT2 mice from both sexes, we report the existence of a glutamatergic projection from the mesencephalic locomotor region to the striatum that avoids the spiny neurons and selectively innervates interneurons. Specifically, optogenetic activation of glutamatergic axons from the pedunculopontine nucleus induced monosynaptic excitation in most recorded striatal cholinergic interneurons and GABAergic fast-spiking interneurons. Optogenetic stimulation in awake head-fixed mice consistently induced an increase in the firing rate of putative cholinergic interneurons and fast-spiking interneurons. In contrast, this stimulation did not induce excitatory responses in spiny neurons but rather disynaptic inhibitory responses ex vivo and a decrease in their firing rate in vivo, suggesting a feedforward mechanism mediating the inhibition of spiny projection neurons through the selective activation of striatal interneurons. Furthermore, unilateral stimulation of pedunculopontine nucleus glutamatergic axons in the striatum induced ipsilateral head rotations consistent with the inhibition of striatal output neurons. Our results demonstrate the existence of a unique interneuron-specific midbrain glutamatergic input to the striatum that exclusively recruits feedforward inhibition mechanisms.SIGNIFICANCE STATEMENT Glutamatergic inputs to the striatum have been shown to target both striatal projection neurons and interneurons and have been proposed to regulate spike timing of the projection neurons in part through feedforward inhibition. Here, we reveal the existence of a midbrain source of glutamatergic innervation to the striatum, originating in the pedunculopontine nucleus. Remarkably, this novel input selectively targets striatal interneurons, avoiding the projection neurons. Furthermore, we show that this selective innervation of interneurons can regulate the firing of the spiny projection neurons and inhibit the striatal output via feedforward inhibition. Together, our results describe a unique source of excitatory innervation to the striatum which selectively recruits feedforward inhibition of spiny neurons without any accompanying excitation.
Assuntos
Interneurônios/fisiologia , Neostriado/citologia , Neostriado/fisiologia , Inibição Neural/fisiologia , Neurônios/fisiologia , Núcleo Tegmental Pedunculopontino/citologia , Núcleo Tegmental Pedunculopontino/fisiologia , Ácido gama-Aminobutírico/fisiologia , Animais , Animais Geneticamente Modificados , Axônios/fisiologia , Gânglios da Base/fisiologia , Feminino , Locomoção/fisiologia , Masculino , Mesencéfalo/fisiologia , Camundongos , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Optogenética , Sistema Nervoso Parassimpático/fisiologia , Proteína Vesicular 2 de Transporte de Glutamato/genéticaRESUMO
Cholinergic transmission in the striatal complex is critical for the modulation of the activity of local microcircuits and dopamine release. Release of acetylcholine has been considered to originate exclusively from a subtype of striatal interneuron that provides widespread innervation of the striatum. Cholinergic neurons of the pedunculopontine (PPN) and laterodorsal tegmental (LDT) nuclei indirectly influence the activity of the dorsal striatum and nucleus accumbens through their innervation of dopamine and thalamic neurons, which in turn converge at the same striatal levels. Here we show that cholinergic neurons in the brainstem also provide a direct innervation of the striatal complex. By the expression of fluorescent proteins in choline acetyltransferase (ChAT)::Cre(+) transgenic rats, we selectively labeled cholinergic neurons in the rostral PPN, caudal PPN, and LDT. We show that cholinergic neurons topographically innervate wide areas of the striatal complex: rostral PPN preferentially innervates the dorsolateral striatum, and LDT preferentially innervates the medial striatum and nucleus accumbens core in which they principally form asymmetric synapses. Retrograde labeling combined with immunohistochemistry in wild-type rats confirmed the topography and cholinergic nature of the projection. Furthermore, transynaptic gene activation and conventional double retrograde labeling suggest that LDT neurons that innervate the nucleus accumbens also send collaterals to the thalamus and the dopaminergic midbrain, thus providing both direct and indirect projections, to the striatal complex. The differential activity of cholinergic interneurons and cholinergic neurons of the brainstem during reward-related paradigms suggest that the two systems play different but complementary roles in the processing of information in the striatum.
Assuntos
Acetilcolina/metabolismo , Vias Aferentes/fisiologia , Tronco Encefálico/fisiologia , Corpo Estriado/metabolismo , Neurônios/metabolismo , Núcleo Accumbens/metabolismo , Animais , Channelrhodopsins , Toxina da Cólera/metabolismo , Colina O-Acetiltransferase/genética , Colina O-Acetiltransferase/metabolismo , Corpo Estriado/citologia , Corpo Estriado/ultraestrutura , Feminino , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Neurônios/ultraestrutura , Núcleo Accumbens/citologia , Núcleo Accumbens/ultraestrutura , Ratos , Ratos Long-Evans , Ratos Transgênicos , Sinapses/metabolismo , Sinapses/ultraestrutura , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo , Aglutininas do Germe de Trigo/metabolismoRESUMO
Emotion recognition and the resulting responses are important for survival and social functioning. However, how socially derived information is processed for reliable emotion recognition is incompletely understood. Here, we reveal an evolutionarily conserved long-range inhibitory/excitatory brain network mediating these socio-cognitive processes. Anatomical tracing in mice revealed the existence of a subpopulation of somatostatin (SOM) GABAergic neurons projecting from the medial prefrontal cortex (mPFC) to the retrosplenial cortex (RSC). Through optogenetic manipulations and Ca2+ imaging fiber photometry in mice and functional imaging in humans, we demonstrate the specific participation of these long-range SOM projections from the mPFC to the RSC, and an excitatory feedback loop from the RSC to the mPFC, in emotion recognition. Notably, we show that mPFC-to-RSC SOM projections are dysfunctional in mouse models relevant to psychiatric vulnerability and can be targeted to rescue emotion recognition deficits in these mice. Our findings demonstrate a cortico-cortical circuit underlying emotion recognition.
Assuntos
Emoções , Córtex Pré-Frontal , Animais , Emoções/fisiologia , Córtex Pré-Frontal/fisiologia , Camundongos , Masculino , Humanos , Neurônios GABAérgicos/fisiologia , Vias Neurais/fisiologia , Somatostatina/metabolismo , Reconhecimento Psicológico/fisiologia , Camundongos Endogâmicos C57BL , Optogenética , Feminino , Giro do Cíngulo/fisiologiaRESUMO
Parkinson's disease (PD) is characterized by progressive motor as well as less recognized non-motor symptoms that arise often years before motor manifestation, including sleep and gastrointestinal disturbances. Despite the heavy burden on the patient's quality of life, these non-motor manifestations are poorly understood. To elucidate the temporal dynamics of the disease, we employed a mouse model involving injection of alpha-synuclein (αSyn) pre-formed fibrils (PFF) in the duodenum and antrum as a gut-brain model of Parkinsonism. Using anatomical mapping of αSyn-PFF propagation and behavioral and physiological characterizations, we unveil a correlation between post-injection time the temporal dynamics of αSyn propagation and non-motor/motor manifestations of the disease. We highlight the concurrent presence of αSyn aggregates in key brain regions, expressing acetylcholine or dopamine, involved in sleep duration, wakefulness, and particularly REM-associated atonia corresponding to REM behavioral disorder-like symptoms. This study presents a novel and in-depth exploration into the multifaceted nature of PD, unraveling the complex connections between α-synucleinopathies, gut-brain connectivity, and the emergence of non-motor phenotypes.
RESUMO
The cholinergic midbrain is involved in a wide range of motor and cognitive processes. Cholinergic neurons of the pedunculopontine (PPN) and laterodorsal tegmental nucleus (LDT) send long-ranging axonal projections that target sensorimotor and limbic areas in the thalamus, the dopaminergic midbrain and the striatal complex following a topographical gradient, where they influence a range of functions including attention, reinforcement learning and action-selection. Nevertheless, a comprehensive examination of the afferents to PPN and LDT cholinergic neurons is still lacking, partly due to the neurochemical heterogeneity of this region. Here we characterize the whole-brain input connectome to cholinergic neurons across distinct functional domains (i.e. PPN vs LDT) using conditional transsynaptic retrograde labeling in ChAT::Cre male and female rats. We reveal that input neurons are widely distributed throughout the brain but segregated into specific functional domains. Motor related areas innervate preferentially the PPN, whereas limbic related areas preferentially innervate the LDT. The quantification of input neurons revealed that both PPN and LDT receive similar substantial inputs from the superior colliculus and the output of the basal ganglia (i.e. substantia nigra pars reticulata). Notably, we found that PPN cholinergic neurons receive preferential inputs from basal ganglia structures, whereas LDT cholinergic neurons receive preferential inputs from limbic cortical areas. Our results provide the first characterization of inputs to PPN and LDT cholinergic neurons and highlight critical differences in the connectome among brain cholinergic systems thus supporting their differential roles in behavior.
Assuntos
Mapeamento Encefálico/métodos , Colina O-Acetiltransferase/metabolismo , Neurônios Colinérgicos/fisiologia , Pareamento Cromossômico/fisiologia , Vias Neurais/fisiologia , Núcleo Tegmental Pedunculopontino/fisiologia , Tegmento Mesencefálico/fisiologia , Animais , Feminino , Masculino , Núcleo Tegmental Pedunculopontino/anatomia & histologia , Ratos , Tegmento Mesencefálico/anatomia & histologiaRESUMO
The mesencephalic locomotor region (MLR) serves as an interface between higher-order motor systems and lower motor neurons. The excitatory module of the MLR is composed of the pedunculopontine nucleus (PPN) and the cuneiform nucleus (CnF), and their activation has been proposed to elicit different modalities of movement. However, how the differences in connectivity and physiological properties explain their contributions to motor activity is not well known. Here we report that CnF glutamatergic neurons are more electrophysiologically homogeneous than PPN neurons and have mostly short-range connectivity, whereas PPN glutamatergic neurons are heterogeneous and maintain long-range connections, most notably with the basal ganglia. Optogenetic activation of CnF neurons produces short-lasting muscle activation, driving involuntary motor activity. In contrast, PPN neuron activation produces long-lasting increases in muscle tone that reduce motor activity and disrupt gait. Our results highlight biophysical and functional attributes among MLR neurons that support their differential contribution to motor behavior.
Assuntos
Locomoção/fisiologia , Mesencéfalo/fisiologia , Formação Reticular Mesencefálica/fisiologia , Núcleo Tegmental Pedunculopontino/fisiologia , Adolescente , Animais , Gânglios da Base/fisiologia , Marcha/fisiologia , Humanos , Masculino , Neurônios/fisiologiaRESUMO
Cholinergic transmission is essential for adaptive behavior and has been suggested to play a central role in the modulation of brain states by means of the modulation of thalamic neurons. Midbrain cholinergic neurons from the pedunculopontine nucleus (PPN) and the laterodorsal tegmental nucleus (LDT) provide dense innervation of the thalamus, but a detailed connectivity mapping is missing. Using conditional tracing of midbrain cholinergic axons in the rat, together with a detailed segmentation of thalamic structures, we show that projections arising in PPN and LDT are topographically organized along the entire extent of the thalamus. PPN cholinergic neurons preferentially innervate thalamic relay structures, whereas LDT cholinergic neurons preferentially target thalamic limbic nuclei. Moreover, both PPN and LDT provide a dense innervation of the intralaminar thalamic nuclei. Notably, we observe a differential synaptic density that functionally dissociates between PPN and LDT innervation. Our results show that midbrain cholinergic neurons innervate virtually all thalamic structures and this innervation is functionally segregated.
Assuntos
Mesencéfalo , Tálamo , Animais , Axônios , Colinérgicos , Neurônios Colinérgicos , Ratos , Núcleos TalâmicosRESUMO
Assimilation of novel strategies into a consolidated action repertoire is a crucial function for behavioral adaptation and cognitive flexibility. Acetylcholine in the striatum plays a pivotal role in such adaptation, and its release has been causally associated with the activity of cholinergic interneurons. Here we show that the midbrain, a previously unknown source of acetylcholine in the striatum, is a major contributor to cholinergic transmission in the striatal complex. Neurons of the pedunculopontine and laterodorsal tegmental nuclei synapse with striatal cholinergic interneurons and give rise to excitatory responses. Furthermore, they produce uniform inhibition of spiny projection neurons. Inhibition of acetylcholine release from midbrain terminals in the striatum impairs the association of contingencies and the formation of habits in an instrumental task, and mimics the effects observed following inhibition of acetylcholine release from striatal cholinergic interneurons. These results suggest the existence of two hierarchically-organized modes of cholinergic transmission in the striatum, where cholinergic interneurons are modulated by cholinergic neurons of the midbrain.
Assuntos
Neurônios Colinérgicos/fisiologia , Mesencéfalo/fisiologia , Neostriado/fisiologia , Rede Nervosa/fisiologia , Neurônios Aferentes/fisiologia , Animais , Comportamento Animal , Feminino , Objetivos , Interneurônios/fisiologia , Masculino , Camundongos , Optogenética , Fosforilação , Ratos Long-Evans , Sinapses/fisiologiaRESUMO
The prefrontal cortex (PFC) is implicated in processing of the affective state of others through non-verbal communication. This social cognitive function is thought to rely on an intact cortical neuronal excitatory and inhibitory balance. Here combining in vivo electrophysiology with a behavioral task for affective state discrimination in mice, we show a differential activation of medial PFC (mPFC) neurons during social exploration that depends on the affective state of the conspecific. Optogenetic manipulations revealed a double dissociation between the role of interneurons in social cognition. Specifically, inhibition of mPFC somatostatin (SOM+), but not of parvalbumin (PV+) interneurons, abolishes affective state discrimination. Accordingly, synchronized activation of mPFC SOM+ interneurons selectively induces social discrimination. As visualized by in vivo single-cell microendoscopic Ca2+ imaging, an increased synchronous activity of mPFC SOM+ interneurons, guiding inhibition of pyramidal neurons, is associated with affective state discrimination. Our findings provide new insights into the neurobiological mechanisms of affective state discrimination.
Assuntos
Afeto/fisiologia , Interneurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Comportamento Social , Animais , Masculino , Camundongos , Somatostatina/metabolismoRESUMO
Striatal dopamine (DA) is a major player in action selection and reinforcement. DA release is under strong local control by striatal ACh acting at axonal nicotinic ACh receptors (nAChRs) on DA axons. Striatal nAChRs have been shown to control how DA is released in response to ascending activity from DA neurons, and they also directly drive DA release following synchronized activity in a small local cholinergic network. The source of striatal ACh has been thought to arise solely from intrinsic cholinergic interneurons (ChIs), but recent findings have identified a source of cholinergic inputs to striatum from brainstem nuclei, the pedunculopontine nucleus (PPN) and laterodorsal tegmentum (LDT). Here, we used targeted optogenetic activation alongside DA detection with fast-scan cyclic voltammetry to test whether ChIs alone and/or brainstem afferents to the striatum can account for how ACh drives and modulates DA release in rat striatum. We demonstrate that targeted transient light activation of rat striatal ChIs drives striatal DA release, corroborating and extending previous observations in mouse to rat. However, the same light stimulation targeted to cholinergic brainstem afferents did not drive DA release, and nor did it modulate DA release activated subsequently by electrical stimulation, whereas targeted activation of ChIs did so. We were unable to obtain any evidence for DA modulation by PPN/LDT stimulation. By contrast, we could readily identify that striatal ChIs alone are sufficient to provide a source of ACh that powerfully regulates DA via nAChRs.
Assuntos
Colinérgicos/farmacologia , Corpo Estriado/metabolismo , Dopamina/metabolismo , Interneurônios/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Acetilcolina/farmacologia , Animais , Corpo Estriado/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Interneurônios/metabolismo , Masculino , Nicotina/metabolismo , Núcleo Accumbens/metabolismo , Ratos Long-Evans , Receptores Nicotínicos/efeitos dos fármacos , Receptores Nicotínicos/metabolismoRESUMO
RATIONALE: Corticostriatal circuits are widely implicated in the top-down control of attention including inhibitory control and behavioural flexibility. However, recent neurophysiological evidence also suggests a role for thalamic inputs to striatum in behaviours related to salient, reward-paired cues. OBJECTIVES: Here, we used designer receptors exclusively activated by designer drugs (DREADDs) to investigate the role of parafascicular (Pf) thalamic inputs to the dorsomedial striatum (DMS) using the five-choice serial reaction time task (5CSRTT) in rats. METHODS: The 5CSRTT requires sustained attention in order to detect spatially and temporally distributed visual cues and provides measures of inhibitory control related to impulsivity (premature responses) and compulsivity (perseverative responses). Rats underwent bilateral Pf injections of the DREADD vector, AAV2-CaMKIIa-HA-hM4D(Gi)-IRES-mCitrine. The DREADD agonist, clozapine N-oxide (CNO; 1 µl bilateral; 3 µM) or vehicle, was injected into DMS 1 h before behavioural testing. Task parameters were manipulated to increase attention load or reduce stimulus predictability respectively. RESULTS: We found that inhibition of the Pf-DMS projection significantly increased perseverative responses when stimulus predictability was reduced but had no effect on premature responses or response accuracy, even under increased attentional load. Control experiments showed no effects on locomotor activity in an open field. CONCLUSIONS: These results complement previous lesion work in which the DMS and orbitofrontal cortex were similarly implicated in perseverative responses and suggest a specific role for thalamostriatal inputs in inhibitory control.
Assuntos
Comportamento de Escolha/fisiologia , Corpo Estriado/fisiologia , Tempo de Reação/fisiologia , Tálamo/fisiologia , Animais , Atenção/efeitos dos fármacos , Atenção/fisiologia , Comportamento de Escolha/efeitos dos fármacos , Clozapina/análogos & derivados , Clozapina/farmacologia , Corpo Estriado/efeitos dos fármacos , Sinais (Psicologia) , Inibição Psicológica , Masculino , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Ratos , Ratos Long-Evans , Tempo de Reação/efeitos dos fármacos , Recompensa , Transmissão Sináptica , Tálamo/efeitos dos fármacosRESUMO
The neural mechanisms underlying cognitive deficits in schizophrenia are poorly understood. Sub-chronic treatment with the NMDA antagonist phencyclidine (PCP) produces cognitive abnormalities in rodents that reliably model aspects of the neurocognitive alterations observed in schizophrenia. Given that network activity across regions encompassing medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) plays a significant role in motivational and cognitive tasks, we measured activity across cortico-striatal pathways in PCP-treated rats to characterize neural enabling and encoding of task performance in a novel object recognition task. We found that PCP treatment impaired task performance and concurrently (1) reduced tonic NAc neuronal activity, (2) desynchronized cross-activation of mPFC and NAc neurons, and (3) prevented the increase in mPFC and NAc neural activity associated with the exploration of a novel object in relation to a familiar object. Taken together, these observations reveal key neuronal and network-level adaptations underlying PCP-induced cognitive deficits, which may contribute to the emergence of cognitive abnormalities in schizophrenia.
Assuntos
Transtornos da Memória/etiologia , Transtornos da Memória/patologia , Núcleo Accumbens/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Reconhecimento Psicológico/fisiologia , Esquizofrenia/complicações , Potenciais de Ação/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Feminino , Alucinógenos/toxicidade , Vias Neurais/fisiopatologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Núcleo Accumbens/patologia , Fenciclidina/toxicidade , Córtex Pré-Frontal/patologia , Ratos , Reconhecimento Psicológico/efeitos dos fármacos , Esquizofrenia/induzido quimicamenteRESUMO
Acetylcholine in the striatal complex plays an important role in normal behavior and is affected in a number of neurological disorders. Although early studies suggested that acetylcholine in the striatum (STR) is derived almost exclusively from cholinergic interneurons (CIN), recent axonal mapping studies using conditional anterograde tracing have revealed the existence of a prominent direct cholinergic pathway from the pedunculopontine and laterodorsal tegmental nuclei to the dorsal striatum and nucleus accumbens. The identification of the importance of this pathway is essential for creating a complete model of cholinergic modulation in the striatum, and it opens the question as to whether other populations of cholinergic neurons may also contribute to such modulation. Here, using novel viral tracing technologies based on phenotype-specific fluorescent reporter expression in combination with retrograde tracing, we aimed to define other sources of cholinergic innervation of the striatum. Systematic mapping of the projections of all cholinergic structures in the brain (Ch1 to Ch8) by means of conditional tracing of cholinergic axons, revealed that the only extrinsic source of cholinergic innervation arises in the brainstem pedunculopontine and laterodorsal tegmental nuclei. Our results thus place the pedunculopontine and laterodorsal nuclei in a key and exclusive position to provide extrinsic cholinergic modulation of the activity of the striatal systems.
RESUMO
Dopamine neurons in the ventral tegmental area (VTA) receive cholinergic innervation from brainstem structures that are associated with either movement or reward. Whereas cholinergic neurons of the pedunculopontine nucleus (PPN) carry an associative/motor signal, those of the laterodorsal tegmental nucleus (LDT) convey limbic information. We used optogenetics and in vivo juxtacellular recording and labeling to examine the influence of brainstem cholinergic innervation of distinct neuronal subpopulations in the VTA. We found that LDT cholinergic axons selectively enhanced the bursting activity of mesolimbic dopamine neurons that were excited by aversive stimulation. In contrast, PPN cholinergic axons activated and changed the discharge properties of VTA neurons that were integrated in distinct functional circuits and were inhibited by aversive stimulation. Although both structures conveyed a reinforcing signal, they had opposite roles in locomotion. Our results demonstrate that two modes of cholinergic transmission operate in the VTA and segregate the neurons involved in different reward circuits.
Assuntos
Acetilcolina/farmacologia , Vias Neurais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Área Tegmentar Ventral/efeitos dos fármacos , Animais , Colinérgicos/farmacologia , Dopamina/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Masculino , Vias Neurais/fisiologia , Núcleo Accumbens/metabolismo , Ratos Long-Evans , Tegmento Mesencefálico/efeitos dos fármacos , Área Tegmentar Ventral/fisiologiaRESUMO
Midbrain dopamine (DA) neurons are key players in motivation and reward processing. Increased DA release is thought to be central in the initiation of drug addiction. Whereas dopamine neurons are generally considered to be activated by drugs such as nicotine, we report here that nicotine not only induces excitation of ventral tegmental area (VTA) DA cells but also induces inhibition of a subset of VTA DA neurons that are anatomically segregated in the medial part of the VTA. These opposite responses do not correlate with the inhibition and excitation induced by noxious stimuli. We show that this inhibition requires D2 receptor (D2-R) activation, suggesting that a dopaminergic release is involved in the mechanism. Our findings suggest a principle of concurrent excitation and inhibition of VTA DA cells in response to nicotine. It promotes unexplored roles for DA release in addiction contrasting with the classical views of reinforcement and motivation, and give rise to a new interpretation of the mode of operation of the reward system.