Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
BMC Infect Dis ; 23(1): 505, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37525143

RESUMO

BACKGROUND: In clinical practice the diagnosis of diabetic foot osteomyelitis (DFO) relies on cultures of bone or ulcer bed (UB) biopsies, of which bone biopsy is reference standard. The slow growth or fastidious nature of some bacteria, hamper expeditious detection and identification. Rapid molecular techniques may solve both issues, but their additional value for everyday practice is unknown. We investigated the concordance between conventional culture, the molecular techniques Molecular Culture (MC), and illumina 16S rRNA gene amplicon (16S) sequencing in people with DFO. METHODS: In the BeBoP trial, bone and UB biopsies were obtained from people with DFO who visited Amsterdam UMC. These biopsies were analysed using 1) conventional culture, 2)MC, a rapid broad range PCR analysing the 16S-23S ribosomal-interspace-region, and 3) 16S sequencing, and evaluated concordance among these techniques. RESULTS: We analysed 20 samples (11 bone and 9 UB) of 18 people. A total of 84 infectious agents were identified, 45 (54%) by all techniques, an additional 22 (26.5%, overall 80.5%) by both MC and 16S, and the remaining 16 species by culture and MC or 16S, or by a single method only. MC and 16S identified anaerobes not detected by culturing in 5 samples, and the presence of bacteria in 7 of 8 culture-negative (6 bone, 2 UB) samples. CONCLUSION: The high level of concordance between MC and 16S and the additional ability of molecular techniques to detect various bacteria not detected by culturing opens up prospects for routine use of fast molecular techniques, in clinical settings including DFO. TRIAL REGISTRATION: The BeBoP trial is retrospectively registered on 05-03-2019 in Netherlands Trial Register: NL 7582.


Assuntos
Diabetes Mellitus , Pé Diabético , Osteomielite , Humanos , Pé Diabético/diagnóstico , Pé Diabético/microbiologia , RNA Ribossômico 16S/genética , Genes de RNAr , Úlcera , Bactérias/genética , Osteomielite/diagnóstico , Osteomielite/microbiologia , Biópsia
2.
Clin Infect Dis ; 74(5): 776-784, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-34156449

RESUMO

BACKGROUND: Viruses and bacteria from the nasopharynx are capable of causing community-acquired pneumonia (CAP), which can be difficult to diagnose. We aimed to investigate whether shifts in the composition of these nasopharyngeal microbial communities can be used as diagnostic biomarkers for CAP in adults. METHODS: We collected nasopharyngeal swabs from adult CAP patients and controls without infection in a prospective multicenter case-control study design. We generated bacterial and viral profiles using 16S ribosomal RNA gene sequencing and multiplex polymerase chain reaction (PCR), respectively. Bacterial, viral, and clinical data were subsequently used as inputs for extremely randomized trees classification models aiming to distinguish subjects with CAP from healthy controls. RESULTS: We enrolled 117 cases and 48 control subjects. Cases displayed significant beta diversity differences in nasopharyngeal microbiota (P = .016, R2 = .01) compared to healthy controls. Our extremely randomized trees classification models accurately discriminated CAP caused by bacteria (area under the curve [AUC] .83), viruses (AUC .95) or mixed origin (AUC .81) from healthy control subjects. We validated this approach using a dataset of nasopharyngeal samples from 140 influenza patients and 38 controls, which yielded highly accurate (AUC .93) separation between cases and controls. CONCLUSIONS: Relative proportions of different bacteria and viruses in the nasopharynx can be leveraged to diagnose CAP and identify etiologic agent(s) in adult patients. Such data can inform the development of a microbiota-based diagnostic panel used to identify CAP patients and causative agents from nasopharyngeal samples, potentially improving diagnostic specificity, efficiency, and antimicrobial stewardship practices.


Assuntos
Infecções Comunitárias Adquiridas , Microbiota , Infecções Respiratórias , Adulto , Bactérias/genética , Estudos de Casos e Controles , Infecções Comunitárias Adquiridas/diagnóstico , Humanos , Microbiota/genética , Nasofaringe/microbiologia , Estudos Prospectivos , Sistema Respiratório/microbiologia
3.
Diabetologia ; 63(3): 597-610, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31915895

RESUMO

AIMS/HYPOTHESIS: The pathophysiology of type 1 diabetes has been linked to altered gut microbiota and more specifically to a shortage of intestinal production of the short-chain fatty acid (SCFA) butyrate, which may play key roles in maintaining intestinal epithelial integrity and in human and gut microbial metabolism. Butyrate supplementation can protect against autoimmune diabetes in mouse models. We thus set out to study the effect of oral butyrate vs placebo on glucose regulation and immune variables in human participants with longstanding type 1 diabetes. METHODS: We administered a daily oral dose of 4 g sodium butyrate or placebo for 1 month to 30 individuals with longstanding type 1 diabetes, without comorbidity or medication use, in a randomised (1:1), controlled, double-blind crossover trial, with a washout period of 1 month in between. Participants were randomly allocated to the 'oral sodium butyrate capsules first' or 'oral placebo capsules first' study arm in blocks of five. The clinical investigator received blinded medication from the clinical trial pharmacy. All participants, people doing measurements or examinations, or people assessing the outcomes were blinded to group assignment. The primary outcome was a change in the innate immune phenotype (monocyte subsets and in vitro cytokine production). Secondary outcomes were changes in blood markers of islet autoimmunity (cell counts, lymphocyte stimulation indices and CD8 quantum dot assays), glucose and lipid metabolism, beta cell function (by mixed-meal test), gut microbiota and faecal SCFA. The data was collected at the Amsterdam University Medical Centers. RESULTS: All 30 participants were analysed. Faecal butyrate and propionate levels were significantly affected by oral butyrate supplementation and butyrate treatment was safe. However, this modulation of intestinal SCFAs did not result in any significant changes in adaptive or innate immunity, or in any of the other outcome variables. In our discussion, we elaborate on this important discrepancy with previous animal work. CONCLUSIONS/INTERPRETATION: Oral butyrate supplementation does not significantly affect innate or adaptive immunity in humans with longstanding type 1 diabetes. TRIAL REGISTRATION: Netherlands Trial Register: NL4832 (www.trialregister.nl). DATA AVAILABILITY: Raw sequencing data are available in the European Nucleotide Archive repository (https://www.ebi.ac.uk/ena/browse) under study PRJEB30292. FUNDING: The study was funded by a Le Ducq consortium grant, a CVON grant, a personal ZONMW-VIDI grant and a Dutch Heart Foundation grant.


Assuntos
Autoimunidade/efeitos dos fármacos , Ácido Butírico/administração & dosagem , Diabetes Mellitus Tipo 1/tratamento farmacológico , Imunidade Inata/efeitos dos fármacos , Ilhotas Pancreáticas/imunologia , Imunidade Adaptativa/efeitos dos fármacos , Administração Oral , Adulto , Ácido Butírico/efeitos adversos , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/patologia , Progressão da Doença , Feminino , Humanos , Ilhotas Pancreáticas/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Países Baixos , Fatores de Tempo , Adulto Jovem
4.
Appl Environ Microbiol ; 83(18)2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28687644

RESUMO

The composition and activity of the microbiota in the human gastrointestinal tract are primarily shaped by nutrients derived from either food or the host. Bacteria colonizing the mucus layer have evolved to use mucin as a carbon and energy source. One of the members of the mucosa-associated microbiota is Akkermansia muciniphila, which is capable of producing an extensive repertoire of mucin-degrading enzymes. To further study the substrate utilization abilities of A. muciniphila, we constructed a genome-scale metabolic model to test amino acid auxotrophy, vitamin biosynthesis, and sugar-degrading capacities. The model-supported predictions were validated by in vitro experiments, which showed A. muciniphila to be able to utilize the mucin-derived monosaccharides fucose, galactose, and N-acetylglucosamine. Growth was also observed on N-acetylgalactosamine, even though the metabolic model did not predict this. The uptake of these sugars, as well as the nonmucin sugar glucose, was enhanced in the presence of mucin, indicating that additional mucin-derived components are needed for optimal growth. An analysis of whole-transcriptome sequencing (RNA-Seq) comparing the gene expression of A. muciniphila grown on mucin with that of the same bacterium grown on glucose confirmed the activity of the genes involved in mucin degradation and revealed most of these to be upregulated in the presence of mucin. The transcriptional response was confirmed by a proteome analysis, altogether revealing a hierarchy in the use of sugars and reflecting the adaptation of A. muciniphila to the mucosal environment. In conclusion, these findings provide molecular insights into the lifestyle of A. muciniphila and further confirm its role as a mucin specialist in the gut.IMPORTANCEAkkermansia muciniphila is among the most abundant mucosal bacteria in humans and in a wide range of other animals. Recently, A. muciniphila has attracted considerable attention because of its capacity to protect against diet-induced obesity in mouse models. However, the physiology of A. muciniphila has not been studied in detail. Hence, we constructed a genome-scale model and describe its validation by transcriptomic and proteomic approaches on bacterial cells grown on mucus and glucose, a nonmucus sugar. The results provide detailed molecular insight into the mucus-degrading lifestyle of A. muciniphila and further confirm the role of this mucin specialist in producing propionate and acetate under conditions of the intestinal tract.


Assuntos
Proteínas de Bactérias/genética , Intestinos/microbiologia , Mucinas/metabolismo , Verrucomicrobia/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Genoma Bacteriano , Glucose/metabolismo , Mucosa Intestinal/metabolismo , Proteômica , Suínos , Verrucomicrobia/química , Verrucomicrobia/genética , Verrucomicrobia/crescimento & desenvolvimento
5.
Appl Environ Microbiol ; 82(23): 6983-6993, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27663027

RESUMO

Akkermansia muciniphila colonizes the mucus layer of the gastrointestinal tract, where the organism can be exposed to the oxygen that diffuses from epithelial cells. To understand how A. muciniphila is able to survive and grow at this oxic-anoxic interface, its oxygen tolerance and response and reduction capacities were studied. A. muciniphila was found to be oxygen tolerant. On top of this, under aerated conditions, A. muciniphila showed significant oxygen reduction capacities and its growth rate and yield were increased compared to those seen under strict anaerobic conditions. Transcriptome analysis revealed an initial oxygen stress response upon exposure to oxygen. Thereafter, genes related to respiration were expressed, including those coding for the cytochrome bd complex, which can function as a terminal oxidase. The functionality of A. muciniphila cytochrome bd genes was proven by successfully complementing cytochrome-deficient Escherichia coli strain ECOM4. We conclude that A. muciniphila can use oxygen when it is present at nanomolar concentrations.IMPORTANCE This article explains how Akkermansia muciniphila, previously described as a strictly anaerobic bacterium, is able to tolerate and even benefit from low levels of oxygen. Interestingly, we measured growth enhancement of A. muciniphila and changes in metabolism as a result of the oxygen exposure. In this article, we discuss similarities and differences of this oxygen-responsive mechanism with respect to those of other intestinal anaerobic isolates. Taken together, we think that these are valuable data that indicate how anaerobic intestinal colonizing bacteria can exploit low levels of oxygen present in the mucus layer and that our results have direct relevance for applicability, as addition of low oxygen concentrations could benefit the in vitro growth of certain anaerobic organisms.

7.
Gut Pathog ; 16(1): 5, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254227

RESUMO

BACKGROUND: Pakistan is a multi-ethnic society where there is a disparity between dietary habits, genetic composition, and environmental exposures. The microbial ecology of healthy Pakistani gut in the context of anthropometric, sociodemographic, and dietary patterns holds interest by virtue of it being one of the most populous countries, and also being a Lower Middle Income Country (LMIC). METHODS: 16S rRNA profiling of healthy gut microbiome of normo-weight healthy Pakistani individuals from different regions of residence is performed with additional meta-data collected through filled questionnaires. The current health status is then linked to dietary patterns through [Formula: see text] test of independence and Generalized Linear Latent Variable Model (GLLVM) where distribution of individual microbes is regressed against all recorded sources of variability. To identify the core microbiome signature, a dynamic approach is used that considers into account species occupancy as well as consistency across assumed grouping of samples including organization by gender and province of residence. Fitting neutral modeling then revealed core microbiome that is selected by the environment. RESULTS: A strong determinant of disparity is by province of residence. It is also established that the male microbiome is better adapted to the local niche than the female microbiome, and that there is microbial taxonomic and functional diversity in different ethnicities, dietary patterns and lifestyle habits. Some microbial genera, such as, Megamonas, Porphyromonas, Haemophilus, Klebsiella and Finegoldia showed significant associations with consumption of pickle, fresh fruits, rice, and cheese. Our analyses suggest current health status being associated with the diet, sleeping patterns, employment status, and the medical history. CONCLUSIONS: This study provides a snapshot of the healthy core Pakistani gut microbiome by focusing on the most populous provinces and ethnic groups residing in predominantly urban areas. The study serves a reference dataset for exploring variations in disease status and designing personalized dietary and lifestyle interventions to promote gut health, particularly in LMICs settings.

8.
BMJ Open Diabetes Res Care ; 12(4)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39025794

RESUMO

INTRODUCTION: The association between the gut microbiome and incident type 2 diabetes (T2D) is potentially partly mediated through sphingolipids, however these possible mediating mechanisms have not been investigated. We examined whether sphingolipids mediate the association between gut microbiome and T2D, using data from the Healthy Life in an Urban Setting study. RESEARCH DESIGN AND METHODS: Participants were of Dutch or South-Asian Surinamese ethnicity, aged 18-70 years, and without T2D at baseline. A case-cohort design (subcohort n=176, cases incident T2D n=36) was used. The exposure was measured by 16S rRNA sequencing (gut microbiome) and mediator by targeted metabolomics (sphingolipids). Dimensionality reduction was achieved by principle component analysis and Shannon diversity. Cox regression and procrustes analyses were used to assess the association between gut microbiome and T2D and sphingolipids and T2D, and between gut microbiome and sphingolipids, respectively. Mediation was tested familywise using mediation analysis with permutation testing and Bonferroni correction. RESULTS: Our study confirmed associations between gut microbiome and T2D and sphingolipids and T2D. Additionally, we showed that the gut microbiome was associated with sphingolipids. The association between gut microbiome and T2D was partly mediated by a sphingolipid principal component, which represents a dominance of ceramide species over more complex sphingolipids (HR 1.17; 95% CI 1.08 to 1.28; proportional explained 48%), and by Shannon diversity (HR 0.97; 95% CI 0.95 to 0.99; proportional explained 24.8%). CONCLUSIONS: These data suggest that sphingolipids mediate the association between microbiome and T2D risk. Future research is needed to confirm observed findings and elucidate causality on a molecular level.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Esfingolipídeos , Humanos , Diabetes Mellitus Tipo 2/microbiologia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/epidemiologia , Esfingolipídeos/sangue , Pessoa de Meia-Idade , Masculino , Feminino , Adulto , Idoso , Estudos de Casos e Controles , Estudos de Coortes , Adulto Jovem , Adolescente , Fatores de Risco , Seguimentos , Biomarcadores/sangue , Biomarcadores/análise , RNA Ribossômico 16S/análise , Prognóstico
9.
Nat Microbiol ; 9(7): 1812-1827, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38858593

RESUMO

Dietary intake of phytate has various reported health benefits. Previous work showed that the gut microbiota can convert phytate to short-chain fatty acids (SCFAs), but the microbial species and metabolic pathway are unclear. Here we identified Mitsuokella jalaludinii as an efficient phytate degrader, which works synergistically with Anaerostipes rhamnosivorans to produce the SCFA propionate. Analysis of published human gut taxonomic profiles revealed that Mitsuokella spp., in particular M. jalaludinii, are prevalent in human gut microbiomes. NMR spectroscopy using 13C-isotope labelling, metabolomic and transcriptomic analyses identified a complete phytate degradation pathway in M. jalaludinii, including production of the intermediate Ins(2)P/myo-inositol. The major end product, 3-hydroxypropionate, was converted into propionate via a synergistic interaction with Anaerostipes rhamnosivorans both in vitro and in mice. Upon [13C6]phytate administration, various 13C-labelled components were detected in mouse caecum in contrast with the absence of [13C6] InsPs or [13C6]myo-inositol in plasma. Caco-2 cells incubated with co-culture supernatants exhibited improved intestinal barrier integrity. These results suggest that the microbiome plays a major role in the metabolism of this phytochemical and that its fermentation to propionate by M. jalaludinii and A. rhamnosivorans may contribute to phytate-driven health benefits.


Assuntos
Microbioma Gastrointestinal , Ácido Fítico , Ácido Fítico/metabolismo , Humanos , Animais , Camundongos , Células CACO-2 , Clostridiales/metabolismo , Clostridiales/genética , Ácidos Graxos Voláteis/metabolismo , Propionatos/metabolismo , Interações Microbianas , Redes e Vias Metabólicas , Metabolômica/métodos , Inositol/metabolismo , Inositol/análogos & derivados
10.
Microorganisms ; 12(4)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38674708

RESUMO

Ageing changes the impact of nutrition, whereby inflammation has been suggested to play a role in age-related disabilities such as diabetes and cardiovascular disease. The aim of this study was to investigate differences in postprandial bile-acid response and its effect on energy metabolism between young and elderly people. Nine young, healthy men and nine elderly, healthy men underwent a liquid mixed-meal test. Postprandial bile-acid levels, insulin, glucose, GLP-1, C4, FGF19 and lipids were measured. Appetite, body composition, energy expenditure and gut microbiome were also measured. The elderly population showed lower glycine conjugated CDCA and UDCA levels and higher abundances of Ruminiclostridium, Marvinbryantia and Catenibacterium, but lower food intake, decreased fat free mass and increased cholesterol levels. Aging is associated with changes in postprandial bile-acid composition and microbiome, diminished hunger and changes in body composition and lipid levels. Further studies are needed to determine if these changes may contribute to malnutrition and sarcopenia in elderly.

11.
J Natl Cancer Inst ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924513

RESUMO

BACKGROUND: The microbiome has been associated with chemotherapy and immune checkpoint inhibitor (ICI) efficacy. How this pertains to resectable esophageal carcinoma (EC) is unknown. Our aim was to identify microbial signatures in resectable EC associated with response to neoadjuvant chemoradiotherapy (nCRT) with or without ICI. METHODS: From two prospectively collected EC cohorts (n = 172 in total) treated with nCRT alone (n = 132) or a combination of nCRT and ICI (n = 40), fecal samples were available at baseline, during treatment, and pre-surgery. Additionally, in the ICI treated patients, tumor and duodenal snap frozen biopsies were collected over time. Fecal, tumor and duodenal DNA were extracted for 16S rRNA sequencing. Associations were investigated between microbiome composition pathological complete response (pCR) and progression-free survival (PFS). RESULTS: There was a significant shift in the microbiota profile of the fecal, tumor and duodenal microbiota over time. In the total cohort, patients with a pCR had a stable fecal alpha diversity, while the diversity of poor responders decreased during treatment, p = 0.036. Pre-surgery, lower alpha diversity (<4.12) was related to worse PFS, log-rank p = 0.025. Baseline tumor biopsies of patients with short PFS had more Fusobacterium. A low baseline duodenal alpha diversity (<3.96) was associated with worse PFS, log-rank p = 0.012. CONCLUSIONS: Lower intestinal alpha diversity was associated with worse response and survival of EC patients. In tumor biopsies Fusobacterium was more abundant in patients with poor PFS. After further mechanistic validation, these findings may aid in response prediction and the design of novel microbiome modulating treatments for EC patients.

12.
Nutrients ; 16(10)2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38794769

RESUMO

Several metabolites of the essential amino acid tryptophan have emerged as key players in gut homeostasis through different cellular pathways, particularly through metabolites which can activate the aryl hydrocarbon receptor (AHR). This study aimed to map the metabolism of tryptophan in early life and investigate the effects of specific metabolites on epithelial cells and barrier integrity. Twenty-one tryptophan metabolites were measured in the feces of full-term and preterm neonates as well as in human milk and formula. The ability of specific AHR metabolites to regulate cytokine-induced IL8 expression and maintain barrier integrity was assessed in Caco2 cells and human fetal organoids (HFOs). Overall, higher concentrations of tryptophan metabolites were measured in the feces of full-term neonates compared to those of preterm ones. Within AHR metabolites, indole-3-lactic acid (ILA) was significantly higher in the feces of full-term neonates. Human milk contained different levels of several tryptophan metabolites compared to formula. Particularly, within the AHR metabolites, indole-3-sulfate (I3S) and indole-3-acetic acid (IAA) were significantly higher compared to formula. Fecal-derived ILA and milk-derived IAA were capable of reducing TNFα-induced IL8 expression in Caco2 cells and HFOs in an AHR-dependent manner. Furthermore, fecal-derived ILA and milk-derived IAA significantly reduced TNFα-induced barrier disruption in HFOs.


Assuntos
Fezes , Leite Humano , Receptores de Hidrocarboneto Arílico , Triptofano , Humanos , Receptores de Hidrocarboneto Arílico/metabolismo , Leite Humano/metabolismo , Leite Humano/química , Células CACO-2 , Triptofano/metabolismo , Recém-Nascido , Fezes/química , Ácidos Indolacéticos/metabolismo , Feminino , Recém-Nascido Prematuro , Interleucina-8/metabolismo , Indóis/farmacologia , Fórmulas Infantis , Organoides/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos
13.
Nutrients ; 16(12)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38931177

RESUMO

CONTEXT/OBJECTIVE: In order to better understand which metabolic differences are related to insulin resistance in metabolic syndrome (MetSyn), we used hyperinsulinemic-euglycemic (HE) clamps in individuals with MetSyn and related peripheral insulin resistance to circulating biomarkers. DESIGN/METHODS: In this cross-sectional study, HE-clamps were performed in treatment-naive men (n = 97) with MetSyn. Subjects were defined as insulin-resistant based on the rate of disappearance (Rd). Machine learning models and conventional statistics were used to identify biomarkers of insulin resistance. Findings were replicated in a cohort with n = 282 obese men and women with (n = 156) and without (n = 126) MetSyn. In addition to this, the relation between biomarkers and adipose tissue was assessed by nuclear magnetic resonance imaging. RESULTS: Peripheral insulin resistance is marked by changes in proteins related to inflammatory processes such as IL-1 and TNF-receptor and superfamily members. These proteins can distinguish between insulin-resistant and insulin-sensitive individuals (AUC = 0.72 ± 0.10) with MetSyn. These proteins were also associated with IFG, liver fat (rho 0.36, p = 1.79 × 10-9) and visceral adipose tissue (rho = 0.35, p = 6.80 × 10-9). Interestingly, these proteins had the strongest association in the MetSyn subgroup compared to individuals without MetSyn. CONCLUSIONS: MetSyn associated with insulin resistance is characterized by protein changes related to body fat content, insulin signaling and pro-inflammatory processes. These findings provide novel targets for intervention studies and should be the focus of future in vitro and in vivo studies.


Assuntos
Biomarcadores , Resistência à Insulina , Síndrome Metabólica , Proteoma , Humanos , Síndrome Metabólica/metabolismo , Masculino , Feminino , Estudos Transversais , Pessoa de Meia-Idade , Adulto , Biomarcadores/sangue , Técnica Clamp de Glucose , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Insulina/sangue , Insulina/metabolismo , Gordura Intra-Abdominal/metabolismo
14.
Gut Microbes ; 16(1): 2370616, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38961712

RESUMO

Amino acids, metabolized by host cells as well as commensal gut bacteria, have signaling effects on host metabolism. Oral supplementation of the essential amino acid histidine has been shown to exert metabolic benefits. To investigate whether dietary histidine aids glycemic control, we performed a case-controlled parallel clinical intervention study in participants with type 2 diabetes (T2D) and healthy controls. Participants received oral histidine for seven weeks. After 2 weeks of histidine supplementation, the microbiome was depleted by antibiotics to determine the microbial contribution to histidine metabolism. We assessed glycemic control, immunophenotyping of peripheral blood mononucelar cells (PBMC), DNA methylation of PBMCs and fecal gut microbiota composition. Histidine improves several markers of glycemic control, including postprandial glucose levels with a concordant increase in the proportion of MAIT cells after two weeks of histidine supplementation. The increase in MAIT cells was associated with changes in gut microbial pathways such as riboflavin biosynthesis and epigenetic changes in the amino acid transporter SLC7A5. Associations between the microbiome and MAIT cells were replicated in the MetaCardis cohort. We propose a conceptual framework for how oral histidine may affect MAIT cells via altered gut microbiota composition and SLC7A5 expression in MAIT cells directly and thereby influencing glycemic control. Future studies should focus on the role of flavin biosynthesis intermediates and SLC7A5 modulation in MAIT cells to modulate glycemic control.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Histidina , Células T Invariantes Associadas à Mucosa , Humanos , Histidina/metabolismo , Diabetes Mellitus Tipo 2/microbiologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/imunologia , Microbioma Gastrointestinal/efeitos dos fármacos , Pessoa de Meia-Idade , Masculino , Feminino , Células T Invariantes Associadas à Mucosa/imunologia , Células T Invariantes Associadas à Mucosa/metabolismo , Controle Glicêmico , Suplementos Nutricionais , Estudos de Casos e Controles , Fezes/microbiologia , Glicemia/metabolismo , Idoso , Adulto , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Administração Oral , Metilação de DNA
15.
Cardiovasc Res ; 120(4): 372-384, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38289866

RESUMO

AIMS: Gut microbiota have been linked to blood lipid levels and cardiovascular diseases (CVDs). The composition and abundance of gut microbiota trophic networks differ between ethnicities. We aim to evaluate the relationship between gut microbiotal trophic networks and CVD phenotypes. METHODS AND RESULTS: We included cross-sectional data from 3860 individuals without CVD history from 6 ethnicities living in the Amsterdam region participating in the prospective Healthy Life in Urban Setting (HELIUS) study. Genetic variants were genotyped, faecal gut microbiota were profiled, and blood and anthropometric parameters were measured. A machine learning approach was used to assess the relationship between CVD risk (Framingham score) and gut microbiota stratified by ethnicity. Potential causal relationships between gut microbiota composition and CVD were inferred by performing two-sample Mendelian randomization with hard CVD events from the Pan-UK Biobank and microbiome genome-wide association studies summary data from a subset of the HELIUS cohort (n = 4117). Microbial taxa identified to be associated with CVD by machine learning and Mendelian randomization were often ethnic-specific, but some concordance across ethnicities was found. The microbes Akkermansia muciniphila and Ruminococcaceae UCG-002 were protective against ischaemic heart disease in African-Surinamese and Moroccans, respectively. We identified a strong inverse association between blood lipids, CVD risk, and the combined abundance of the correlated microbes Christensenellaceae-Methanobrevibacter-Ruminococcaceae (CMR). The CMR cluster was also identified in two independent cohorts and the association with triglycerides was replicated. CONCLUSION: Certain gut microbes can have a potentially causal relationship with CVD events, with possible ethnic-specific effects. We identified a trophic network centred around Christensenellaceae, Methanobrevibacter, and various Ruminococcaceae, frequently lacking in South-Asian Surinamese, to be protective against CVD risk and associated with low triglyceride levels.


Assuntos
Doenças Cardiovasculares , Etnicidade , Microbioma Gastrointestinal , Humanos , Bactérias/genética , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/microbiologia , Estudos Transversais , Estudo de Associação Genômica Ampla , Lipídeos , Estudos Prospectivos , Fatores de Risco , Países Baixos
16.
BMC Genomics ; 14: 530, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23915218

RESUMO

BACKGROUND: Next generation sequencing (NGS) technologies can be applied in complex microbial ecosystems for metatranscriptome analysis by employing direct cDNA sequencing, which is known as RNA sequencing (RNA-seq). RNA-seq generates large datasets of great complexity, the comprehensive interpretation of which requires a reliable bioinformatic pipeline. In this study, we focus on the development of such a metatranscriptome pipeline, which we validate using Illumina RNA-seq datasets derived from the small intestine microbiota of two individuals with an ileostomy. RESULTS: The metatranscriptome pipeline developed here enabled effective removal of rRNA derived sequences, followed by confident assignment of the predicted function and taxonomic origin of the mRNA reads. Phylogenetic analysis of the small intestine metatranscriptome datasets revealed a strong similarity with the community composition profiles obtained from 16S rDNA and rRNA pyrosequencing, indicating considerable congruency between community composition (rDNA), and the taxonomic distribution of overall (rRNA) and specific (mRNA) activity among its microbial members. Reproducibility of the metatranscriptome sequencing approach was established by independent duplicate experiments. In addition, comparison of metatranscriptome analysis employing single- or paired-end sequencing methods indicated that the latter approach does not provide improved functional or phylogenetic insights. Metatranscriptome functional-mapping allowed the analysis of global, and genus specific activity of the microbiota, and illustrated the potential of these approaches to unravel syntrophic interactions in microbial ecosystems. CONCLUSIONS: A reliable pipeline for metatransciptome data analysis was developed and evaluated using RNA-seq datasets obtained for the human small intestine microbiota. The set-up of the pipeline is very generic and can be applied for (bacterial) metatranscriptome analysis in any chosen niche.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Perfilação da Expressão Gênica/métodos , Intestino Delgado/microbiologia , Metagenoma/genética , Idoso , Biologia Computacional/normas , Feminino , Perfilação da Expressão Gênica/normas , Humanos , Redes e Vias Metabólicas/genética , Pessoa de Meia-Idade , Filogenia , RNA Mensageiro/genética , Padrões de Referência , Análise de Sequência de RNA
17.
Nutrients ; 15(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36678203

RESUMO

Expert groups argue to raise the recommended daily allowance for protein in older adults from 0.8 to 1.2 g/kg/day to prevent undernutrition. However, protein is thought to increase satiety, possibly through effects on gut microbiota and central appetite regulation. If true, raising daily protein intake may work counterproductively. In a randomized controlled trial, we evaluated the effects of dietary advice aimed at increasing protein intake to 1.2 g/kg adjusted body weight/day (g/kg aBW/day) on appetite and gut microbiota in 90 community-dwelling older adults with habitual protein intake <1.0 g/kg aBW/day (Nintervention = 47, Ncontrol = 43). Food intake was determined by 24-h dietary recalls and gut microbiota by 16S rRNA sequencing. Functional magnetic resonance imaging (fMRI) scans were performed in a subgroup of 48 participants to evaluate central nervous system responses to food-related stimuli. Both groups had mean baseline protein intake of 0.8 ± 0.2 g/kg aBW/day. At 6 months' follow-up this increased to 1.2 ± 0.2 g/kg aBW/day for the intervention group and 0.9 ± 0.2 g/kg aBW/day for the control group. Microbiota composition was not affected, nor were appetite or brain activity in response to food-related stimuli. Increasing protein intake in older adults to 1.2 g/kg aBW/day does not negatively impact the gut microbiota or suppress appetite.


Assuntos
Apetite , Microbioma Gastrointestinal , Humanos , Idoso , Vida Independente , RNA Ribossômico 16S , Dieta
18.
Microbiome ; 11(1): 99, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37158898

RESUMO

BACKGROUND: During the course of history, various important lifestyle changes have caused profound transitions of the gut microbiome. These include the introduction of agriculture and animal husbandry, a shift from a nomadic to a more sedentary lifestyle, and recently increased levels of urbanization and a transition towards a more Western lifestyle. The latter is linked with shifts in the gut microbiome that have a reduced fermentative capability and which are commonly associated with diseases of affluence. In this study, in which 5193 subjects are included, we investigated the direction of microbiome shifts that occur in various ethnicities living in Amsterdam by comparing 1st and 2nd generation participants. We furthermore validated part of these findings with a cohort of subjects that moved from rural Thailand to the USA. RESULTS: The abundance of the Prevotella cluster, which includes P. copri and the P. stercorea trophic network, diminished in the 2nd generation Moroccans and Turks but also in younger Dutch, whilst the Western-associated Bacteroides/Blautia/Bifidobacterium (BBB) cluster, which has an inverse correlation with α-diversity, increased. At the same time, the Christensenellaceae/Methanobrevibacter/Oscillibacter trophic network, which is positively associated with α-diversity and a healthy BMI, decreased in younger Turks and Dutch. Large compositional shifts were not observed in South-Asian and African Surinamese, in whom the BBB cluster is already dominant in the 1st generation, but ASV-level shifts towards certain species, associated amongst others with obesity, were observed. CONCLUSION: The Moroccan and Turkish populations, but also the Dutch population are transitioning towards a less complex and fermentative less capable configuration of the gut microbiota, which includes a higher abundance of the Western-associated BBB cluster. The Surinamese, whom have the highest prevalence of diabetes and other diseases of affluence, are already dominated by the BBB cluster. Given the continuous increase in diseases of affluence, this devolution towards low-diversity and fermentatively less capable gut microbiome compositions in urban environments is a worrying development. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Humanos , Microbioma Gastrointestinal/genética , Etnicidade , Criação de Animais Domésticos , Bacteroides , Bifidobacterium , Clostridiales
19.
Microorganisms ; 11(9)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37764082

RESUMO

Fecal microbiota transplantation (FMT) is under investigation for several indications, including ulcerative colitis (UC). The clinical success of FMT depends partly on the engraftment of viable bacteria. Because the vast majority of human gut microbiota consists of anaerobes, the currently used aerobic processing protocols of donor stool may diminish the bacterial viability of transplanted material. This study assessed the effect of four processing techniques for donor stool (i.e., anaerobic and aerobic, both direct processing and after temporary cool storage) on bacterial viability. By combining anaerobic culturing on customized media for anaerobes with 16S rRNA sequencing, we could successfully culture and identify the majority of the bacteria present in raw fecal suspensions. We show that direct anaerobic processing of donor stool is superior to aerobic processing conditions for preserving the bacterial viability of obligate anaerobes and butyrate-producing bacteria related to the clinical response to FMT in ulcerative colitis patients, including Faecalibacterium, Eubacterium hallii, and Blautia. The effect of oxygen exposure during stool processing decreased when the samples were stored long-term. Our results confirm the importance of sample conditioning to preserve the bacterial viability of oxygen-sensitive gut bacteria. Anaerobic processing of donor stool may lead to increased clinical success of FMT, which should further be investigated in clinical trials.

20.
iScience ; 26(8): 107471, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37599833

RESUMO

High-protein diets are promoted for individuals with type 2 diabetes (T2D). However, effects of dietary protein interventions on (gut-derived) metabolites in T2D remains understudied. We therefore performed a multi-center, randomized-controlled, isocaloric protein intervention with 151 participants following either 12-week high-protein (HP; 30Energy %, N = 78) vs. low-protein (LP; 10 Energy%, N = 73) diet. Primary objectives were dietary effects on glycemic control which were determined via glycemic excursions, continuous glucose monitors and HbA1c. Secondary objectives were impact of diet on gut microbiota composition and -derived metabolites which were determined by shotgun-metagenomics and mass spectrometry. Analyses were performed using delta changes adjusting for center, baseline, and kidney function when appropriate. This study found that a short-term 12-week isocaloric protein modulation does not affect glycemic parameters or weight in metformin-treated T2D. However, the HP diet slightly worsened kidney function, increased alpha-diversity, and production of potentially harmful microbiota-dependent metabolites, which may affect host metabolism upon prolonged exposure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA